求方案数的平方之和。这个看起来很难解决。如果转化为求方案数的有序对的个数。那么就相当于求A和B同时取,最后序列一样的种数。

令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取了k个,下管道取了i+j-k个珠子的序列相同的种数。

那么状态转移方程显然可得。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
//# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int dp[N][N][N];
char s1[N], s2[N]; int dfs(int x, int y, int z){
if (~dp[x][y][z]) return dp[x][y][z];
int res=;
if (x>&&z>&&s1[x]==s1[z]) res+=dfs(x-,y,z-);
if (x>&&x+y>z&&s1[x]==s2[x+y-z]) res+=dfs(x-,y,z);
if (y>&&z>&&s2[y]==s1[z]) res+=dfs(x,y-,z-);
if (y>&&x+y>z&&s2[y]==s2[x+y-z]) res+=dfs(x,y-,z);
return dp[x][y][z]=res%MOD;
}
int main ()
{
int n, m;
scanf("%d%d%s%s",&n,&m,s1+,s2+);
mem(dp,-); dp[][][]=;
printf("%d\n",dfs(n,m,n));
return ;
}

BZOJ 1566 管道取珠(DP)的更多相关文章

  1. [BZOJ 1566] 管道取珠

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 Solution: 思路十分精奇的一道题目 题目要求的是$\sum_{i=1}^k ...

  2. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  3. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  4. bzoj1566: [NOI2009]管道取珠 DP

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...

  5. [NOI2009]管道取珠 DP + 递推

    ---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...

  6. bzoj1566 [NOI2009]管道取珠——DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...

  7. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  8. BZOJ 1566 【NOI2009】 管道取珠

    题目链接:管道取珠 这道题思路还是很巧妙的. 一开始我看着那个平方不知所措……看了题解后发现,这种问题有一类巧妙的转化.我们可以看成两个人来玩这个游戏,那么答案就是第二个人的每个方案在第一个人的所有方 ...

  9. 【BZOJ1566】【NOI2009】管道取珠(动态规划)

    [BZOJ1566][NOI2009]管道取珠(动态规划) 题面 BZOJ 题解 蛤?只有两档部分分.一脸不爽.jpg 第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了 #include<i ...

随机推荐

  1. WPF MVVM从入门到精通1:MVVM模式简介

    原文:WPF MVVM从入门到精通1:MVVM模式简介 WPF MVVM从入门到精通1:MVVM模式简介 WPF MVVM从入门到精通2:实现一个登录窗口 WPF MVVM从入门到精通3:数据绑定 W ...

  2. Mac 用Ctr+C复制,Ctr+V 粘贴

    用习惯Windows的用户,进入Mac,不习惯快捷方式. 用下面的方法,可以返回windows 习惯. 1.进入系统偏好设置->键盘->修饰键 2.Control 选择 Command,C ...

  3. [arc062E]Building Cubes with AtCoDeer

    Description 传送门 Solution 这道题直接暴力就好..毕竟只要枚举了前后两个瓷砖的方向和编号,其他瓷砖的颜色就是确定的了. 然而场上我的去重除了问题qaq. 我们钦定在立方体最前面的 ...

  4. 最优布线问题(wire.cpp)

    最优布线问题(wire.cpp) [问题描述] 学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来.两台计算机被连接是指它们间有数据线连接.由于计算机所处的位置不同,因此不同的两台计算机的 ...

  5. 电信NB-IOT的温湿度采集器开发记录

    1. 首先打开浏览器,登录电信商用服务器,上传profile文件 2. 上传编解码插件在,注意的是,上传编解码插件是电信测试用服务器平台(不同的网址),反正不明白电信搞啥幺蛾子,得两个地方去上传 3. ...

  6. Mac OS 上 VIM 8.0 安装体验

    VIM 8.0 赶在中秋前发布 The best way to install Vim on Unix is to use the sources. This requires a compiler ...

  7. 【MYSQL安装】mysql 5.6在centos6.4上的安装

    1.卸载系统自带的mysql [root@zhangmeng ~]# rpm -qa |grep mysql mysql-libs--.el6_3.x86_64 [root@zhangmeng ~]# ...

  8. 基于MapReduce的(用户、物品、内容)的协同过滤推荐算法

    1.基于用户的协同过滤推荐算法 利用相似度矩阵*评分矩阵得到推荐列表 已经推荐过的置零 2.基于物品的协同过滤推荐算法 3.基于内容的推荐 算法思想:给用户推荐和他们之前喜欢的物品在内容上相似的物品 ...

  9. 【转】自动化测试 - Appium + Python史上最全最简环境搭建步骤

    一,为什么是Appium借一张图: 1.1 Appium优点 l  开源 l  跨架构:NativeApp.Hybird App.Web App l  跨设备:Android.iOS.Firefox ...

  10. Java接口获取系统配置信息

    Java获取当前运行系统的配置信息 接口:System.getProperty() 参数 描述 java.version Java运行时环境版本 java.vendor Java运行时环境供应商 ja ...