Balanced Number

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 9036    Accepted Submission(s): 4294

Problem Description
A
balanced number is a non-negative integer that can be balanced if a
pivot is placed at some digit. More specifically, imagine each digit as a
box with weight indicated by the digit. When a pivot is placed at some
digit of the number, the distance from a digit to the pivot is the
offset between it and the pivot. Then the torques of left part and right
part can be calculated. It is balanced if they are the same. A balanced
number must be balanced with the pivot at some of its digits. For
example, 4139 is a balanced number with pivot fixed at 3. The torqueses
are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part,
respectively. It's your job
to calculate the number of balanced numbers in a given range [x, y].
 
Input
The
input contains multiple test cases. The first line is the total number
of cases T (0 < T ≤ 30). For each case, there are two integers
separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).
 
Output
For each case, print the number of balanced numbers in the range [x, y] in a line.
 
Sample Input
2
0 9
7604 24324
 
Sample Output
10
897
分析:对于这道题,如果一个数中每个数位到支点的距离*这个数位的和为0,那么这个数为平衡数.这样我们定义状态就要考虑力矩和和支点.支点可以在dfs前枚举得到,力矩和可以在处理每个数位的时候得到.但是这个算法是有缺陷的,例如0000,000000也会被统计,我们只需要减去给定范围0全是0的数的个数即可.这里可以进行一个小小的优化,如果力矩和已经为负数,说明已经处理到了支点左边,接着处理下去绝对会小于0,那么回溯即可
 
#include<iostream>
#include<string.h>
#define ll long long
using namespace std;
ll shu[], dp[][][];//dp[i][j][k],i是长度,j是支点,k是力矩和,dp[i][j][k]是以j为支点的平衡数的数量
ll dfs(ll len, ll zhidian, ll sum, bool shangxian)
{
if (len == )
return sum == ? : ;
if (sum < )//因为力矩和是从支点右边开始算的(sum>0),如果左边的力矩都处理完之后sum<0,那一定不是平衡数
return ;
if (!shangxian&&dp[len][zhidian][sum]!=-)
return dp[len][zhidian][sum];
ll mx, cnt = ;
mx = (shangxian ? shu[len] : );
for (ll i = ; i <= mx; i++)//注意是<=
{
ll temp = sum;
temp = temp + (len - zhidian)*i;//len会不断的被return ,细细体会
cnt = cnt + dfs(len - , zhidian, temp, i == mx && shangxian);
}
if (!shangxian)
dp[len][zhidian][sum] = cnt;
return cnt;
} ll solve(ll n)
{
ll len = ;
while (n)
{
shu[++len] = n % ;
n = n / ;
}
ll ans = ;
for (ll i = ; i <= len; i++)//支点是从1开始,因为最高位的数一定不是平衡数
ans = ans + dfs(len, i, , true);
return ans - (len - );//如果0是支点,程序也会判断是平衡数,但是不符合题意
}
int main()
{
ll l, r, t;
scanf("%lld", &t);
memset(dp,-,sizeof(dp));//如果默认0会TLE
while (t--)
{
scanf("%lld%lld", &l, &r);
printf("%lld\n", solve(r) - solve(l - ));
}
return ;
}

参考自https://www.cnblogs.com/zbtrs/p/6106783.html

hdu 3709 Balanced Number(平衡数)--数位dp的更多相关文章

  1. HDU 3709 Balanced Number 求区间内的满足是否平衡的数量 (数位dp)

    平衡数的定义是指,以某位作为支点,此位的左面(数字 * 距离)之和 与右边相等,距离是指某位到支点的距离; 题意:求区间内满足平衡数的数量 : 分析:很好这又是常见的数位dp , 不过不同的是我们这次 ...

  2. HDU 3709 Balanced Number (数位DP)

    Balanced Number Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  3. hdu 3709 Balanced Number(数位dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题意:给定区间[a,b],求区间内平衡数的个数.所谓平衡数即有一位做平衡点,左右两边数字的力矩相 ...

  4. HDU 3709 Balanced Number(数位DP)题解

    思路: 之前想直接开左右两边的数结果爆内存... 枚举每次pivot的位置,然后数位DP,如果sum<0返回0,因为已经小于零说明已经到了pivot右边,继续dfs只会越来越小,且dp数组会炸 ...

  5. HDU 3709 Balanced Number (数位DP)

    题意: 找出区间内平衡数的个数,所谓的平衡数,就是以这个数字的某一位为支点,另外两边的数字大小乘以力矩之和相等,即为平衡数. 思路: 一开始以为需要枚举位数,枚举前缀和,枚举后缀和,一旦枚举起来就会M ...

  6. HDU - 3709 - Balanced Number(数位DP)

    链接: https://vjudge.net/problem/HDU-3709 题意: A balanced number is a non-negative integer that can be ...

  7. hdu3709 (平衡数) 数位DP

    Balanced Number Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  8. HDU 3709 Balanced Number

    发现只要Σa[i]*i%Σa[i]==0就可以. #include<iostream> #include<cstdio> #include<cstring> #in ...

  9. SPOJ BALNUM Balanced Numbers 平衡数(数位DP,状压)

    题意: 平衡树定义为“一个整数的某个数位若是奇数,则该奇数必定出现偶数次:偶数位则必须出现奇数次”,比如 222,数位为偶数2,共出现3次,是奇数次,所以合法.给一个区间[L,R],问有多少个平衡数? ...

随机推荐

  1. Golang使用pkg-config自动获取头文件和链接库的方法

    为了能够重用已有的C语言库,我们在使用Golang开发项目或系统的时候难免会遇到Go和C语言混合编程,这时很多人都会选择使用cgo. 话说cgo这个东西可算得上是让人又爱又恨,好处在于它可以让你快速重 ...

  2. HAService 刨坑

    High availability is a characteristic of a system, which describes the duration (length of time) for ...

  3. ZOJ2748 Free Kick 2017-04-18 20:40 40人阅读 评论(0) 收藏

    Free Kick Time Limit: 2 Seconds      Memory Limit: 65536 KB In a soccer game, a direct free kick is ...

  4. SQL -- What Tables Queries are Used to Display the Counts in the Inventory Account Periods form (INVTTGPM.fmb) (Doc ID ID 357997.1)

    Applies to: Oracle Inventory Management - Version 11.5.9 to 12.1.3 [Release 11.5 to 12.1] Informatio ...

  5. Flask测试和部署

    一 蓝图Blueprint 为什么学习蓝图? 我们学习Flask框架,是从写单个文件,执行hello world开始的.我们在这单个文件中可以定义路由.视图函数.定义模型等等.但这显然存在一个问题:随 ...

  6. asp.net 使用Oracle数据库

    asp.net下使用oracle会发生“未能加载文件或程序集‘Oracle.DataAccess’或它的某一个依赖项”的错误.这说明Oracle的驱动没有安装好,或者版本不对的错误. 1.检查Orac ...

  7. WP8启动您已发布的应用

    您可以使用来自 Windows.Phone.Management.Deployment 命名空间的 API 来确定,来自您的发布者 ID 的其他应用是否安装在手机上.如果已经安装,您也可以使用该 AP ...

  8. (一)ElasticSearch-入门

    目录:一.前言二.安装三.索引四.搜索五.聚合六.分布式的特性 一.前言Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎.无论在开源还是专有领域,Lucene可以被 ...

  9. Java多线程编程:Callable、Future和FutureTask浅析(多线程编程之四)

    java多线程-概念&创建启动&中断&守护线程&优先级&线程状态(多线程编程之一)java多线程同步以及线程间通信详解&消费者生产者模式&死锁& ...

  10. 如何让Syncthing始终使用同一个设备ID?

    设备ID(device id)是Syncthing最重要的参数之一,所有节点的发现.连接等操作,全部是基于这个设备ID!对于已经建立起来的P2P网络,保持重要节点的设备ID唯一性是非常重要的!!!!那 ...