In geometry the Fermat point of a triangle, also called Torricelli point, is a point such that the total distance from the three vertices of the triangle to the point is the minimum. It is so named because this problem is first raised by Fermat in a private letter. In the following picture, P 0 is the Fermat point. You may have already known the property that: 

Alice and Bob are learning geometry. Recently they are studying about the Fermat Point.

Alice: I wonder whether there is a similar point for quadrangle.

Bob: I think there must exist one.

Alice: Then how to know where it is? How to prove?

Bob: I don’t know. Wait… the point may hold the similar property as the case in triangle.

Alice: It sounds reasonable. Why not use our computer to solve the problem? Find the Fermat point, and then verify your assumption.

Bob: A good idea.

So they ask you, the best programmer, to solve it. Find the Fermat point for a quadrangle, i.e. find a point such that the total distance from the four vertices of the quadrangle to that point is the minimum.

 

Input

The input contains no more than 1000 test cases.

Each test case is a single line which contains eight float numbers, and it is formatted as below:

1 y 1 x 2 y 2 x 3 y 3 x 4 y 4

i, y i are the x- and y-coordinates of the ith vertices of a quadrangle. They are float numbers and satisfy 0 ≤ x i ≤ 1000 and 0 ≤ y i ≤ 1000 (i = 1, …, 4).

The input is ended by eight -1.

 

Output

For each test case, find the Fermat point, and output the total distance from the four vertices to that point. The result should be rounded to four digits after the decimal point.
 

Sample Input

0 0 1 1 1 0 0 1
1 1 1 1 1 1 1 1
-1 -1 -1 -1 -1 -1 -1 -1
 

四边形费马点

平面四边形中费马点证明相对于三角形中较为简易,也较容易研究。
(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。
(2)在凹四边形ABCD中,费马点为凹顶点D(P)。

平面四边形费马点证明图形

经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;如果三个内角都在120°以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120°的点。另一种更为简捷的证明 :设O为三顶点连线最短点,以A为圆心AO为半径做圆P。将圆P视作一面镜子。显然O点应该为B出发的光线经过镜子到C的反射点(如果不是,反射点为O',就会有BO’+ CO' < BO+ CO,而AO’= AO,就会有 AO’+ BO’+ CO' < AO + BO + CO)。
不失一般性。O点对于B、C为圆心的镜子也成立。因此根据对称性AO、BO、CO之间夹角都是120°
(补充说明:AO、BO、CO是每个镜子的法线)
 
取四个点其中一个点或者四个点两两连线的交点,各算一遍即可
感受:赛场上没有及时证明猜想,导致smilewsw一直不敢敲...,几何证明实力太弱,虽然想到镜面反射来证最短,但是没有具体转化
这是萌萌smilewsw代码
 
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const double eps=1e-10; double add(double a,double b)
{
if(abs(a+b)<eps*(abs(a)+abs(b))) return 0;
return a+b;
} struct point
{
double x,y;
point () {}
point (double x,double y) : x(x),y(y){ }
point operator + (point p)
{
return point (add(x,p.x),add(y,p.y));
}
point operator - (point p)
{
return point (add(x,-p.x),add(y,-p.y));
}
point operator * (double d)
{
return point (x*d,y*d);
}
double dot(point p)
{
return add(x*p.x,y*p.y);
}
double det(point p)
{
return add(x*p.y,-y*p.x);
}
}; bool on_seg(point p1,point p2,point q)
{
return (p1-q).det(p2-q)==0&&(p1-q).dot(p2-q)<=0;
} point intersection(point p1,point p2,point q1,point q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
} bool cmp_x(const point&p,const point& q)
{
if(p.x!=q.x) return p.x<q.x;
return p.y<q.y;
} vector<point> convex_hull(point*ps,int n)
{
sort(ps,ps+n,cmp_x);
//for(int i=0;i<n;i++) printf("x=%.f %.f")
int k=0;
vector<point> qs(n*2);
for(int i=0;i<n;i++){
while(k>1&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
for(int i=n-2,t=k;i>=0;i--){
while(k>t&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
qs.resize(k-1);
return qs;
} double dis(point p1,point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool equ(point p1,point p2)
{
if(fabs(p1.x-p2.x)<eps&&fabs(p1.y-p2.y)<eps)
return true;
return false;
}
int main()
{
point p[10];
for(int i=0;i<4;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
while(p[0].x!=-1&&p[0].y!=-1)
{
vector <point> m;
double minn=100000000,d;
m=convex_hull(p,4);//检查是否四边形
if(m.size()==4)//如果是四边形则加入对角线交点考虑
minn=dis(m[1],m[3])+dis(m[0],m[2]);
for(int i=0;i<4;i++)
{
d=0;
for(int j=0;j<4;j++)
d+=dis(p[i],p[j]);
minn=min(minn,d);
}
printf("%.4f\n",minn);
for(int i=0;i<4;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
}
return 0;
}

  

hdu 3694 10 福州 现场 E - Fermat Point in Quadrangle 费马点 计算几何 难度:1的更多相关文章

  1. hdu 3695 10 福州 现场 F - Computer Virus on Planet Pandora 暴力 ac自动机 难度:1

    F - Computer Virus on Planet Pandora Time Limit:2000MS     Memory Limit:128000KB     64bit IO Format ...

  2. hdu 3697 10 福州 现场 H - Selecting courses 贪心 难度:0

    Description     A new Semester is coming and students are troubling for selecting courses. Students ...

  3. hdu 3699 10 福州 现场 J - A hard Aoshu Problem 暴力 难度:0

    Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...

  4. hdu 3696 10 福州 现场 G - Farm Game DP+拓扑排序 or spfa+超级源 难度:0

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

  5. hdu 3682 10 杭州 现场 C - To Be an Dream Architect 简单容斥 难度:1

    C - To Be an Dream Architect Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  6. hdu 3685 10 杭州 现场 F - Rotational Painting 重心 计算几何 难度:1

    F - Rotational Painting Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  7. hdu 3682 10 杭州 现场 C To Be an Dream Architect 容斥 难度:0

    C - To Be an Dream Architect Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  8. hdu 3687 10 杭州 现场 H - National Day Parade 水题 难度:0

    H - National Day Parade Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  9. hdu 4770 13 杭州 现场 A - Lights Against Dudely 暴力 bfs 状态压缩DP 难度:1

    Description Harry: "But Hagrid. How am I going to pay for all of this? I haven't any money.&quo ...

随机推荐

  1. java 入门基础学习

    问题一:java编写的源代码为什么能在windows/linux/macOS操作系统运行?运行原理是什么?为什么说它是跨平台的? 从jdk/jvm/jre说起 1.JDK简介 https://blog ...

  2. 洛谷P4428二进制 [BJOI2018] 线段树

    正解:线段树 解题报告: 传送门! 话说开始看到这题的时候我想得hin简单 因为关于%3有个性质就是说一个数的各个位数之和%3=这个数%3嘛,小学基础知识? 我就想着,就直接建一棵树,只是这棵树要用个 ...

  3. api收录

    ip地址查询api http://ip.taobao.com/service/getIpInfo.php?ip= 如: http://ip.taobao.com/service/getIpInfo.p ...

  4. mysql 数据操作 多表查询 子查询 介绍

    子查询就是: 把一条sql语句放在一个括号里,当做另外一条sql语句查询条件使用 拿到这个结果以后 当做下一个sql语句查询条件mysql 数据操作  子查询 #1:子查询是将一个查询语句嵌套在另一个 ...

  5. centos LAMP第四部分mysql操作 忘记root密码 skip-innodb 配置慢查询日志 mysql常用操作 mysql常用操作 mysql备份与恢复 第二十二节课

    centos  LAMP第四部分mysql操作  忘记root密码  skip-innodb 配置慢查询日志 mysql常用操作  mysql常用操作 mysql备份与恢复   第二十二节课 mysq ...

  6. GraphQL:一种不同于REST的接口风格

    从去年开始,JS算是完全踏入ES6时代.在React相关项目中接触到了一些ES6的语法.这次接着GraphQL这种新型的接口风格,从后端的角度接触ES6. 这篇文章从ES6的特征讲起,打好语法基础:然 ...

  7. 数据挖掘-逻辑Logistic回归

    逻辑回归的基本过程:a建立回归或者分类模型--->b 建立代价函数 ---> c 优化方法迭代求出最优的模型参数  --->d 验证求解模型的好坏. 1.逻辑回归模型: 逻辑回归(L ...

  8. 'React/RCTBundleURLProvider.h' file not found

    'React/RCTBundleURLProvider.h' file not found 新建RN项目时在iOS端用xcode跑时有时会遇到 'React/RCTBundleURLProvider. ...

  9. king 选 太子

    king 选 太子 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 啊,从前有一个国家.此国兵强马壮,但是国王却身体不好.于是就想挑一位太子出来: 但是问题来了,国王 ...

  10. 根据Excel文件中的内容,修改指定文件夹下的文件名称

    问题:根据Excel文件中内容,把文件名称由第2列,改为第1列.比如:把文件“123.jpg”修改为“1.jpg”.