B. Friends and Presents
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.

In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.

Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.

A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.

Input

The only line contains four positive integers cnt1, cnt2, xy (1 ≤ cnt1, cnt2 < 10^9; cnt1 + cnt2 ≤ 10^9; 2 ≤ x < y ≤ 3·10^4) — the numbers that are described in the statement. It is guaranteed that numbers xy are prime.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
3 1 2 3
output
5
input
1 3 2 3
output
4
感想:其实直接二分就行了,但是我分类了好一会儿,直接算的
思路:
分成四种情况,1 不能被x,y整除(a) 2 不能被x整除(b) 3 不能被x整除(c) 4 同时能被x,y整除
那么就需要满足
a+b>=cnt2
a+c>=cnt1
a+b+c>=cnt1+cnt2
于是算来算去就算出来了,还是二分好用
 
#include<cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll x,y,cnt1,cnt2;
ll gcd(ll a,ll b){
if(b==0)return a;
return gcd(b,a%b);
}
ll pos(ll a){
if(a>=0)return a;
return 0;
}
int main(){
scanf("%I64d%I64d%I64d%I64d",&cnt1,&cnt2,&x,&y);
ll d=gcd(x,y);
ll lcm=x*y/d;
ll na=lcm-lcm/x-lcm/y+1;
ll nb=lcm/x-1;
ll nc=lcm/y-1;
ll sumn=na+nb+nc;
ll t=(cnt1+cnt2)/sumn;
t=max(t,cnt2/(na+nb));
t=max(t,cnt1/(na+nc));
ll ta=na*t;
ll tb=nb*t;
ll tc=nc*t;
ll ans=lcm*t;
if((pos(cnt2-tb)+pos(cnt1-tc))<=ta)ans--;
else {
ll r=0x7fffffff;
ll r0=pos(cnt2-tb)+pos(cnt1-tc)-ta;
if(r0>=0&&cnt2>=tb&&cnt1>=tc)r=min(r,r0); ll r1=x*(cnt1-tc-ta)/(x-1);
ll tr11=cnt1-tc-ta+(r1/x-1);
if(tr11/x==r1/x-1)r1=min(r1,tr11);
r1=max(r1,x*(cnt2-tb));
if(cnt1>=tc+ta)r=min(r,r1);
ll r2=y*(cnt2-tb-ta)/(y-1);
ll tr2=cnt2-tb-ta+(r2/y-1);
if(tr2/y==r2/y-1)r2=min(r2,tr2);
r2=max(r2,y*(cnt1-tc));
if(cnt2>=tb+ta)r=min(r,r2);
ans+=r;
}
printf("%I64d\n",ans);
return 0;
}

  

 

CF 483B. Friends and Presents 数学 (二分) 难度:1的更多相关文章

  1. Codeforces 483B - Friends and Presents(二分+容斥)

    483B - Friends and Presents 思路:这个博客写的不错:http://www.cnblogs.com/windysai/p/4058235.html 代码: #include& ...

  2. 快速切题CF 158B taxi 构造 && 82A double cola 数学观察 难度:0

    实在太冷了今天 taxi :错误原因1 忽略了 1 1 1 1 和 1 2 1 这种情况,直接认为最多两组一车了 2 语句顺序错 double cola: 忘了减去n的序号1,即n-- B. Taxi ...

  3. CodeForces 483B Friends and Presents

     Friends and Presents Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

  4. Codeforces483B. Friends and Presents(二分+容斥原理)

    题目链接:传送门 题目: B. Friends and Presents time limit per test second memory limit per test megabytes inpu ...

  5. UVA 11881 Internal Rate of Return(数学+二分)

    In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero ...

  6. HDU 6216 A Cubic number and A Cubic Number(数学/二分查找)

    题意: 给定一个素数p(p <= 1e12),问是否存在一对立方差等于p. 分析: 根据平方差公式: 因为p是一个素数, 所以只能拆分成 1*p, 所以 a-b = 1. 然后代入a = b + ...

  7. codeforces 483B Friends and Presents 解题报告

    题目链接:http://codeforces.com/problemset/problem/483/B 题目意思:有两个 friends,需要将 cnt1 个不能整除 x 的数分给第一个friend, ...

  8. UVA 10668 - Expanding Rods(数学+二分)

    UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...

  9. CF 551E. GukiZ and GukiZiana [分块 二分]

    GukiZ and GukiZiana 题意: 区间加 给出$y$查询$a_i=a_j=y$的$j-i$最大值 一开始以为和论文CC题一样...然后发现他带修改并且是给定了值 这样就更简单了.... ...

随机推荐

  1. Romantic---hdu2669(扩展欧几里德模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2669 详解:扩展欧几里德 #include <iostream> #include < ...

  2. Drainage Ditches---hdu1532(最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 题意: 每次下雨的时候,农场主John的农场里就会形成一个池塘,这样就会淹没其中一小块土地,在这 ...

  3. 小米范工具系列之四:小米范HTTP批量发包器

    最新版本1.3,下载地址:http://pan.baidu.com/s/1c1NDSVe  文件名httpsender . 此工具使用java 1.8以上版本运行. 小米范HTTP批量发包器的主要功能 ...

  4. docker搭建oracle 11.2.0.3.0

    dockerfile 如下: FROM oraclelinux:-slim ARG ORACLE_BASE=/opt/oracle ARG ORACLE_HOME=/opt/oracle/produc ...

  5. 通过html<map>标签给图片加链接

    前面我们有谈到了通过图片定位给一张图片添加多个链接,现在用另外一种方法来实现,用html<map>标签给图片加链接 <img src="/images/hlj.jpg&qu ...

  6. Selenium IDE编辑区域修改操作学习

    1.修改command.target.value,选择需要修改的步骤,然后点击下方,既可以直接进行修改. 2.添加新的操作步骤:直接在下方编辑区域的下方点击,然后输入或者选择操作类型,然后点击Targ ...

  7. STL学习笔记--序列式容器

    1.vector vector是一个线性顺序结构.相当于数组,但其大小可以不预先指定,并且自动扩展.故可以将vector看作动态数组. 在创建一个vector后,它会自动在内存中分配一块连续的内存空间 ...

  8. Bootstrap单按钮的下拉菜单

    简介 把任意一个按钮放入 .btn-group 中,然后加入适当的菜单标签,就可以让按钮作为菜单的触发器了. 插件依赖 按钮式下拉菜单依赖下拉菜单插件 ,因此需要将此插件包含在你所使用的 Bootst ...

  9. 给iphone配置qq邮箱

    在手机上使用qq邮箱发送和接受邮件,但是又不用qq邮箱,我用的是“网易邮箱大师” ,那么就需要配置服务. 1.在qq邮箱中设置邮箱,开启相关的服务,然后用手机发送短信来生成授权码.最后在手机上设置的密 ...

  10. laravel 项目部署注意事项

    1.'Failed to open stream: Permission denied' error - Laravel Laravel >= 5.4 php artisan cache:cle ...