gluoncv 训练自己的数据集,进行目标检测
跑了一晚上的模型,实在占GPU资源,这两天已经有很多小朋友说我了。我选择了其中一个参数。
https://github.com/dmlc/gluon-cv/blob/master/scripts/detection/faster_rcnn/train_faster_rcnn.py
train_faster_rcnn的修改之前就弄好了,这里贴一个完整的。
"""Train Faster-RCNN end to end."""
import argparse
import os
# disable autotune
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = ''
import logging
import time
import numpy as np
import mxnet as mx
from mxnet import nd
from mxnet import gluon
from mxnet import autograd
import gluoncv as gcv
from gluoncv import data as gdata
from gluoncv import utils as gutils
from gluoncv.model_zoo import get_model
from gluoncv.data import batchify
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultTrainTransform
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultValTransform
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
from gluoncv.utils.metrics.accuracy import Accuracy # add_lst
from gluoncv.data import LstDetection def parse_args():
parser = argparse.ArgumentParser(description='Train Faster-RCNN networks e2e.')
parser.add_argument('--network', type=str, default='resnet50_v1b',
help="Base network name which serves as feature extraction base.")
parser.add_argument('--dataset', type=str, default='voc',
help='Training dataset. Now support voc and coco.')
parser.add_argument('--num-workers', '-j', dest='num_workers', type=int,
default=4, help='Number of data workers, you can use larger '
'number to accelerate data loading, if you CPU and GPUs are powerful.')
parser.add_argument('--gpus', type=str, default='',
help='Training with GPUs, you can specify 1,3 for example.')
parser.add_argument('--epochs', type=str, default='',
help='Training epochs.')
parser.add_argument('--resume', type=str, default='',
help='Resume from previously saved parameters if not None. '
'For example, you can resume from ./faster_rcnn_xxx_0123.params')
parser.add_argument('--start-epoch', type=int, default=0,
help='Starting epoch for resuming, default is 0 for new training.'
'You can specify it to 100 for example to start from 100 epoch.')
parser.add_argument('--lr', type=str, default='',
help='Learning rate, default is 0.001 for voc single gpu training.')
parser.add_argument('--lr-decay', type=float, default=0.1,
help='decay rate of learning rate. default is 0.1.')
parser.add_argument('--lr-decay-epoch', type=str, default='',
help='epoches at which learning rate decays. default is 14,20 for voc.')
parser.add_argument('--lr-warmup', type=str, default='',
help='warmup iterations to adjust learning rate, default is 0 for voc.')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum, default is 0.9')
parser.add_argument('--wd', type=str, default='',
help='Weight decay, default is 5e-4 for voc')
parser.add_argument('--log-interval', type=int, default=100,
help='Logging mini-batch interval. Default is 100.')
parser.add_argument('--save-prefix', type=str, default='',
help='Saving parameter prefix')
parser.add_argument('--save-interval', type=int, default=1,
help='Saving parameters epoch interval, best model will always be saved.')
parser.add_argument('--val-interval', type=int, default=1,
help='Epoch interval for validation, increase the number will reduce the '
'training time if validation is slow.')
parser.add_argument('--seed', type=int, default=233,
help='Random seed to be fixed.')
parser.add_argument('--verbose', dest='verbose', action='store_true',
help='Print helpful debugging info once set.')
parser.add_argument('--mixup', action='store_true', help='Use mixup training.')
parser.add_argument('--no-mixup-epochs', type=int, default=20,
help='Disable mixup training if enabled in the last N epochs.')
args = parser.parse_args()
if args.dataset == 'voc' or args.dataset == 'pedestrian':
args.epochs = int(args.epochs) if args.epochs else 20
args.lr_decay_epoch = args.lr_decay_epoch if args.lr_decay_epoch else '14,20'
args.lr = float(args.lr) if args.lr else 0.001
args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
args.wd = float(args.wd) if args.wd else 5e-4
elif args.dataset == 'coco':
args.epochs = int(args.epochs) if args.epochs else 26
args.lr_decay_epoch = args.lr_decay_epoch if args.lr_decay_epoch else '17,23'
args.lr = float(args.lr) if args.lr else 0.00125
args.lr_warmup = args.lr_warmup if args.lr_warmup else 8000
args.wd = float(args.wd) if args.wd else 1e-4
num_gpus = len(args.gpus.split(','))
if num_gpus == 1:
args.lr_warmup = -1
else:
args.lr *= num_gpus
args.lr_warmup /= num_gpus
return args class RPNAccMetric(mx.metric.EvalMetric):
def __init__(self):
super(RPNAccMetric, self).__init__('RPNAcc') def update(self, labels, preds):
# label: [rpn_label, rpn_weight]
# preds: [rpn_cls_logits]
rpn_label, rpn_weight = labels
rpn_cls_logits = preds[0] # calculate num_inst (average on those fg anchors)
num_inst = mx.nd.sum(rpn_weight) # cls_logits (b, c, h, w) red_label (b, 1, h, w)
# pred_label = mx.nd.argmax(rpn_cls_logits, axis=1, keepdims=True)
pred_label = mx.nd.sigmoid(rpn_cls_logits) >= 0.5
# label (b, 1, h, w)
num_acc = mx.nd.sum((pred_label == rpn_label) * rpn_weight) self.sum_metric += num_acc.asscalar()
self.num_inst += num_inst.asscalar() class RPNL1LossMetric(mx.metric.EvalMetric):
def __init__(self):
super(RPNL1LossMetric, self).__init__('RPNL1Loss') def update(self, labels, preds):
# label = [rpn_bbox_target, rpn_bbox_weight]
# pred = [rpn_bbox_reg]
rpn_bbox_target, rpn_bbox_weight = labels
rpn_bbox_reg = preds[0] # calculate num_inst (average on those fg anchors)
num_inst = mx.nd.sum(rpn_bbox_weight) / 4 # calculate smooth_l1
loss = mx.nd.sum(rpn_bbox_weight * mx.nd.smooth_l1(rpn_bbox_reg - rpn_bbox_target, scalar=3)) self.sum_metric += loss.asscalar()
self.num_inst += num_inst.asscalar() class RCNNAccMetric(mx.metric.EvalMetric):
def __init__(self):
super(RCNNAccMetric, self).__init__('RCNNAcc') def update(self, labels, preds):
# label = [rcnn_label]
# pred = [rcnn_cls]
rcnn_label = labels[0]
rcnn_cls = preds[0] # calculate num_acc
pred_label = mx.nd.argmax(rcnn_cls, axis=-1)
num_acc = mx.nd.sum(pred_label == rcnn_label) self.sum_metric += num_acc.asscalar()
self.num_inst += rcnn_label.size class RCNNL1LossMetric(mx.metric.EvalMetric):
def __init__(self):
super(RCNNL1LossMetric, self).__init__('RCNNL1Loss') def update(self, labels, preds):
# label = [rcnn_bbox_target, rcnn_bbox_weight]
# pred = [rcnn_reg]
rcnn_bbox_target, rcnn_bbox_weight = labels
rcnn_bbox_reg = preds[0] # calculate num_inst
num_inst = mx.nd.sum(rcnn_bbox_weight) / 4 # calculate smooth_l1
loss = mx.nd.sum(rcnn_bbox_weight * mx.nd.smooth_l1(rcnn_bbox_reg - rcnn_bbox_target, scalar=1)) self.sum_metric += loss.asscalar()
self.num_inst += num_inst.asscalar() def get_dataset(dataset, args):
if dataset.lower() == 'voc':
train_dataset = gdata.VOCDetection(
splits=[(2007, 'trainval'), (2012, 'trainval')])
val_dataset = gdata.VOCDetection(
splits=[(2007, 'test')])
#print(val_dataset.classes)
#('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
elif dataset.lower() == 'coco':
train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
elif dataset.lower() == 'pedestrian':
lst_dataset = LstDetection('train_val.lst',root=os.path.expanduser('.'))
print(len(lst_dataset))
first_img = lst_dataset[0][0] print(first_img.shape)
print(lst_dataset[0][1]) train_dataset = LstDetection('train.lst',root=os.path.expanduser('.'))
val_dataset = LstDetection('val.lst',root=os.path.expanduser('.'))
classs = ('pedestrian',)
val_metric = VOC07MApMetric(iou_thresh=0.5,class_names=classs) else:
raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
if args.mixup:
from gluoncv.data.mixup import MixupDetection
train_dataset = MixupDetection(train_dataset)
return train_dataset, val_dataset, val_metric def get_dataloader(net, train_dataset, val_dataset, batch_size, num_workers):
"""Get dataloader."""
train_bfn = batchify.Tuple(*[batchify.Append() for _ in range(5)])
train_loader = mx.gluon.data.DataLoader(
train_dataset.transform(FasterRCNNDefaultTrainTransform(net.short, net.max_size, net)),
batch_size, True, batchify_fn=train_bfn, last_batch='rollover', num_workers=num_workers)
val_bfn = batchify.Tuple(*[batchify.Append() for _ in range(3)])
val_loader = mx.gluon.data.DataLoader(
val_dataset.transform(FasterRCNNDefaultValTransform(net.short, net.max_size)),
batch_size, False, batchify_fn=val_bfn, last_batch='keep', num_workers=num_workers)
return train_loader, val_loader def save_params(net, logger, best_map, current_map, epoch, save_interval, prefix):
current_map = float(current_map)
if current_map > best_map[0]:
logger.info('[Epoch {}] mAP {} higher than current best {} saving to {}'.format(
epoch, current_map, best_map, '{:s}_best.params'.format(prefix)))
best_map[0] = current_map
net.save_parameters('{:s}_best.params'.format(prefix))
with open(prefix+'_best_map.log', 'a') as f:
f.write('{:04d}:\t{:.4f}\n'.format(epoch, current_map))
if save_interval and (epoch + 1) % save_interval == 0:
logger.info('[Epoch {}] Saving parameters to {}'.format(
epoch, '{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)))
net.save_parameters('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)) def split_and_load(batch, ctx_list):
"""Split data to 1 batch each device."""
num_ctx = len(ctx_list)
new_batch = []
for i, data in enumerate(batch):
new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)]
new_batch.append(new_data)
return new_batch def validate(net, val_data, ctx, eval_metric):
"""Test on validation dataset."""
clipper = gcv.nn.bbox.BBoxClipToImage()
eval_metric.reset()
net.hybridize(static_alloc=True)
for batch in val_data:
batch = split_and_load(batch, ctx_list=ctx)
det_bboxes = []
det_ids = []
det_scores = []
gt_bboxes = []
gt_ids = []
gt_difficults = []
for x, y, im_scale in zip(*batch):
# get prediction results
ids, scores, bboxes = net(x)
det_ids.append(ids)
det_scores.append(scores)
# clip to image size
det_bboxes.append(clipper(bboxes, x))
# rescale to original resolution
im_scale = im_scale.reshape((-1)).asscalar()
det_bboxes[-1] *= im_scale
# split ground truths
gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
gt_bboxes[-1] *= im_scale
gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None) # update metric
for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults):
eval_metric.update(det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff)
return eval_metric.get() def get_lr_at_iter(alpha):
return 1. / 3. * (1 - alpha) + alpha def train(net, train_data, val_data, eval_metric, ctx, args):
"""Training pipeline"""
net.collect_params().setattr('grad_req', 'null')
net.collect_train_params().setattr('grad_req', 'write')
trainer = gluon.Trainer(
net.collect_train_params(), # fix batchnorm, fix first stage, etc...
'sgd',
{'learning_rate': args.lr,
'wd': args.wd,
'momentum': args.momentum,
'clip_gradient': 5}) # lr decay policy
lr_decay = float(args.lr_decay)
lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
lr_warmup = float(args.lr_warmup) # avoid int division # TODO(zhreshold) losses?
rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1/9.) # == smoothl1
rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
rcnn_box_loss = mx.gluon.loss.HuberLoss() # == smoothl1
metrics = [mx.metric.Loss('RPN_Conf'),
mx.metric.Loss('RPN_SmoothL1'),
mx.metric.Loss('RCNN_CrossEntropy'),
mx.metric.Loss('RCNN_SmoothL1'),] rpn_acc_metric = RPNAccMetric()
rpn_bbox_metric = RPNL1LossMetric()
rcnn_acc_metric = RCNNAccMetric()
rcnn_bbox_metric = RCNNL1LossMetric()
metrics2 = [rpn_acc_metric, rpn_bbox_metric, rcnn_acc_metric, rcnn_bbox_metric] # set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
log_file_path = args.save_prefix + '_train.log'
log_dir = os.path.dirname(log_file_path)
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
fh = logging.FileHandler(log_file_path)
logger.addHandler(fh)
logger.info(args)
if args.verbose:
logger.info('Trainable parameters:')
logger.info(net.collect_train_params().keys())
logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
best_map = [0]
for epoch in range(args.start_epoch, args.epochs):
mix_ratio = 1.0
if args.mixup:
# TODO(zhreshold) only support evenly mixup now, target generator needs to be modified otherwise
train_data._dataset.set_mixup(np.random.uniform, 0.5, 0.5)
mix_ratio = 0.5
if epoch >= args.epochs - args.no_mixup_epochs:
train_data._dataset.set_mixup(None)
mix_ratio = 1.0
while lr_steps and epoch >= lr_steps[0]:
new_lr = trainer.learning_rate * lr_decay
lr_steps.pop(0)
trainer.set_learning_rate(new_lr)
logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
for metric in metrics:
metric.reset()
tic = time.time()
btic = time.time()
net.hybridize(static_alloc=True)
base_lr = trainer.learning_rate
for i, batch in enumerate(train_data):
if epoch == 0 and i <= lr_warmup:
# adjust based on real percentage
new_lr = base_lr * get_lr_at_iter(i / lr_warmup)
if new_lr != trainer.learning_rate:
if i % args.log_interval == 0:
logger.info('[Epoch 0 Iteration {}] Set learning rate to {}'.format(i, new_lr))
trainer.set_learning_rate(new_lr)
batch = split_and_load(batch, ctx_list=ctx)
batch_size = len(batch[0])
losses = []
metric_losses = [[] for _ in metrics]
add_losses = [[] for _ in metrics2]
with autograd.record():
for data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks in zip(*batch):
gt_label = label[:, :, 4:5]
gt_box = label[:, :, :4]
cls_pred, box_pred, roi, samples, matches, rpn_score, rpn_box, anchors = net(data, gt_box)
# losses of rpn
rpn_score = rpn_score.squeeze(axis=-1)
num_rpn_pos = (rpn_cls_targets >= 0).sum()
rpn_loss1 = rpn_cls_loss(rpn_score, rpn_cls_targets, rpn_cls_targets >= 0) * rpn_cls_targets.size / num_rpn_pos
rpn_loss2 = rpn_box_loss(rpn_box, rpn_box_targets, rpn_box_masks) * rpn_box.size / num_rpn_pos
# rpn overall loss, use sum rather than average
rpn_loss = rpn_loss1 + rpn_loss2
# generate targets for rcnn
cls_targets, box_targets, box_masks = net.target_generator(roi, samples, matches, gt_label, gt_box)
# losses of rcnn
num_rcnn_pos = (cls_targets >= 0).sum()
rcnn_loss1 = rcnn_cls_loss(cls_pred, cls_targets, cls_targets >= 0) * cls_targets.size / cls_targets.shape[0] / num_rcnn_pos
rcnn_loss2 = rcnn_box_loss(box_pred, box_targets, box_masks) * box_pred.size / box_pred.shape[0] / num_rcnn_pos
rcnn_loss = rcnn_loss1 + rcnn_loss2
# overall losses
losses.append(rpn_loss.sum() * mix_ratio + rcnn_loss.sum() * mix_ratio)
metric_losses[0].append(rpn_loss1.sum() * mix_ratio)
metric_losses[1].append(rpn_loss2.sum() * mix_ratio)
metric_losses[2].append(rcnn_loss1.sum() * mix_ratio)
metric_losses[3].append(rcnn_loss2.sum() * mix_ratio)
add_losses[0].append([[rpn_cls_targets, rpn_cls_targets>=0], [rpn_score]])
add_losses[1].append([[rpn_box_targets, rpn_box_masks], [rpn_box]])
add_losses[2].append([[cls_targets], [cls_pred]])
add_losses[3].append([[box_targets, box_masks], [box_pred]])
autograd.backward(losses)
for metric, record in zip(metrics, metric_losses):
metric.update(0, record)
for metric, records in zip(metrics2, add_losses):
for pred in records:
metric.update(pred[0], pred[1])
trainer.step(batch_size)
# update metrics
if args.log_interval and not (i + 1) % args.log_interval:
# msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics])
msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics + metrics2])
logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}'.format(
epoch, i, args.log_interval * batch_size/(time.time()-btic), msg))
btic = time.time() msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics])
logger.info('[Epoch {}] Training cost: {:.3f}, {}'.format(
epoch, (time.time()-tic), msg))
# if not (epoch + 1) % args.val_interval: # # consider reduce the frequency of validation to save time
# map_name, mean_ap = validate(net, val_data, ctx, eval_metric)
# val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)]) # logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg))
# current_map = float(mean_ap[-1])
# else:
# current_map = 0.
current_map = 0
save_params(net, logger, best_map, current_map, epoch, args.save_interval, args.save_prefix) if __name__ == '__main__':
args = parse_args()
# fix seed for mxnet, numpy and python builtin random generator.
gutils.random.seed(args.seed) # training contexts
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
args.batch_size = len(ctx) # 1 batch per device # network
net_name = '_'.join(('faster_rcnn', args.network, args.dataset))
args.save_prefix += net_name
net = get_model(net_name, pretrained_base=True)
if args.resume.strip():
net.load_parameters(args.resume.strip())
else:
for param in net.collect_params().values():
if param._data is not None:
continue
param.initialize()
net.collect_params().reset_ctx(ctx) # training data
train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args)
train_data, val_data = get_dataloader(
net, train_dataset, val_dataset, args.batch_size, args.num_workers) # training
train(net, train_data, val_data, eval_metric, ctx, args)
检测部分,是在demo 下修改的,填了几个参数,可以用lst文件遍历了,用cv2画图,不用那个matplotlib了
"""Faster RCNN Demo script."""
import os
import argparse
import mxnet as mx
import gluoncv as gcv
from gluoncv.data.transforms import presets
from matplotlib import pyplot as plt
import cv2 font = cv2.FONT_HERSHEY_SIMPLEX def parse_args():
parser = argparse.ArgumentParser(description='Test with Faster RCNN networks.')
parser.add_argument('--network', type=str, default='faster_rcnn_resnet50_v1b_coco',
help="Faster RCNN full network name")
parser.add_argument('--images', type=str, default='',
help='Test images, use comma to split multiple.')
parser.add_argument('--gpus', type=str, default='',
help='Training with GPUs, you can specify 1,3 for example.')
parser.add_argument('--pretrained', type=str, default='True',
help='Load weights from previously saved parameters. You can specify parameter file name.')
parser.add_argument('--thresh', type=float, default=0.5,
help='Threshold of object score when visualize the bboxes.')
# add_lst
parser.add_argument('--lst', type=str,default='',help="predict's lst file")
args = parser.parse_args()
return args if __name__ == '__main__':
args = parse_args()
# context list
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = [mx.cpu()] if not ctx else ctx # grab some image if not specified
if not args.images.strip() and args.lst=='':
gcv.utils.download('https://github.com/dmlc/web-data/blob/master/' +
'gluoncv/detection/biking.jpg?raw=true', 'biking.jpg')
image_list = ['biking.jpg']
else:
image_list = [x.strip() for x in args.images.split(',') if x.strip()] cnt = 0
if args.lst!='':
print(args.lst)
file = open('val_front_0913.lst')
image_list = []
for line in file:
line = line.split('\t')
print('/mnt/hdfs-data-4/data/jian.yin/val_front_0913/'+line[-1][:-1])
image_list.append('/mnt/hdfs-data-4/data/jian.yin/val_front_0913/'+line[-1][:-1])
cnt+=1
print 'sum of pic ',cnt if args.pretrained.lower() in ['true', '', 'yes', 't']:
net = gcv.model_zoo.get_model(args.network, pretrained=True)
else:
net = gcv.model_zoo.get_model(args.network, pretrained=False, pretrained_base=False)
net.load_parameters(args.pretrained)
net.set_nms(0.3, 200)
net.collect_params().reset_ctx(ctx = ctx) ax = None # write plt.txt
fw = open('draw/plt.txt','w')
dict = {}
cnt1 = 0
for image in image_list:
dict['url'] = image
bbox_list = []
x, img = presets.rcnn.load_test(image, short=net.short, max_size=net.max_size)
img_h = img.shape[0]
img_w = img.shape[1] x = x.as_in_context(ctx[0])
ids, scores, bboxes = [xx[0].asnumpy() for xx in net(x)] original_img = cv2.imread(image)
original_img_h = original_img.shape[0]
original_img_w = original_img.shape[1] for i in range(scores.shape[0]):
if scores[i] > args.thresh:
x1 = int(bboxes[i][0]*original_img_h/img_h)
y1 = int(bboxes[i][1]*original_img_w/img_w)
x2 = int(bboxes[i][2]*original_img_h/img_h)
y2 = int(bboxes[i][3]*original_img_w/img_w) bbox_list.append((float(scores[i]),x1,y1,x2,y2))
dict['bbox'] = bbox_list
fw.write(str(dict)+'\n')
cnt1+=1
print 'The last ',cnt-cnt1
fw.close()
# cv2.rectangle(original_img, (x1, y1), (x2, y2), (255,0,0), 3)
# cv2.putText(original_img,'person '+str(scores[i]),(x1,y1),font,0.5,(255,0,0),2)
# cv2.imwrite('draw/'+str(cnt)+'.jpg', original_img) # print(bboxes)
# ax = gcv.utils.viz.plot_bbox(img, bboxes, scores, ids, thresh=args.thresh,
# class_names=net.classes, ax=ax)
# plt.savefig(str(cnt)+'predict.jpg')
# cnt+=1
# plt.show()
把得分情况,锚框位置都写在文件里了,不用每次跑模型来得到,想怎么都可以了。plt.py
import cv2
import os
font = cv2.FONT_HERSHEY_SIMPLEX file = open('plt.txt')
cnt = 1
for line in file:
dict = eval(line)
url = dict['url']
bbox = dict['bbox']
img = cv2.imread(url)
for i in range(len(bbox)):
score = bbox[i][0]
score = '%.2f' % score
x1 = bbox[i][1]
y1 = bbox[i][2]
x2 = bbox[i][3]
y2 = bbox[i][4]
cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 3)
cv2.putText(img,'person '+str(score),(x1,y1),font,0.5,(255,0,0),2)
url = url.split('/')
x_url = url[5]+'/'+url[6]+'/'+url[7]+'/'+url[8]
if not os.path.exists(url[5]+'/'+url[6]+'/'+url[7]+'/'):
os.makedirs(url[5]+'/'+url[6]+'/'+url[7]+'/')
cv2.imwrite(x_url, img)
print('The last ',6137-cnt)
cnt+=1
gluoncv 训练自己的数据集,进行目标检测的更多相关文章
- 目标检测之YOLO V2 V3
YOLO V2 YOLO V2是在YOLO的基础上,融合了其他一些网络结构的特性(比如:Faster R-CNN的Anchor,GooLeNet的\(1\times1\)卷积核等),进行的升级.其目的 ...
- AI佳作解读系列(五) - 目标检测二十年技术综述
计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注. 上周四,arXiv新出一篇目标检测文献<Object Detection ...
- 目标检测:yolo-v3与faster-rcnn
一. 算法背景 1. 机器视觉实际应用往往涉及包含多个物体的复杂场景,基于深度卷积神经网络的特征提取器,需要结合其他算法来准确定位多个目标,并进行识别. 2. 工业领域,目标检测算法在安防和质检系统都 ...
- Notebook交互式完成目标检测任务
摘要:本文将介绍一种在Notebook中进行算法开发的新方式,新手也能够快速训练自己的模型. 目标检测是计算机视觉中非常常用且基础的任务,但是由于目标检测任务的复杂性,往往令新手望而却步.本文将介绍一 ...
- 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...
- 第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)
前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的 ...
- 目标检测算法SSD之训练自己的数据集
目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ...
- 目标检测算法SSD在window环境下GPU配置训练自己的数据集
由于最近想试一下牛掰的目标检测算法SSD.于是乎,自己做了几千张数据(实际只有几百张,利用数据扩充算法比如镜像,噪声,切割,旋转等扩充到了几千张,其实还是很不够).于是在网上找了相关的介绍,自己处理数 ...
- tensorflow目标检测API之训练自己的数据集
1.训练文件的配置 将生成的csv和record文件都放在新建的mydata文件夹下,并打开object_detection文件夹下的data文件夹,复制一个后缀为.pbtxt的文件到mtdata文件 ...
随机推荐
- 十一:image 图片
属性名 类型 默认值 说明 src String 图片资源地址 mode String 'scaleToFill' 图片裁剪.缩放的模式 binderror HandleEvent 当错误发生 ...
- n后问题
Description 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇 ...
- nodejs简易代理服务器
直接代码: var http = require('http') var proxy = http.createServer(function (request, response) { var op ...
- IDEA设置类注解和方法注解(详解)
从eclipse工具到IDEA工具的转化,发现IDEA工具配置注释模板变的不一样了,不说废话了,直接开始 一.设置类注解模板(在创建类的时候自动填充模板) /** * @ProjectName: ${ ...
- SQL索引优化及实战文章总结(总结)
1. MySQL索引原理以及查询优化 2.
- php中怎么导入自己写的类
如果写的类是写在当前php文件内,就直接实例化若你的类写在其他的php文件里,就要先用include或require,将类文件引入<?php include("class.php&qu ...
- sql: MySQL and Microsoft SQL Server Stored Procedures IN, OUT using csharp code
MySQL存储过程: #插入一条返回值涂聚文注 DELIMITER $$ DROP PROCEDURE IF EXISTS `geovindu`.`proc_Insert_BookKindOut` $ ...
- safari
http://www.zhangxinxu.com/wordpress/2014/10/mobilebone-js-mobile-web-app-core/ http://rawgit.com/zha ...
- 旋转/非旋转treap的简单操作
treap(树堆) 是在二叉搜索树的基础上,通过维护随机附加域,使其满足堆性质,从而使树相对平衡的二叉树: 为什么可以这样呢? 因为在维护堆的时候可以同时保证搜索树的性质: (比如当一棵树的一个域满足 ...
- MvcForum中文版+PostgreSql源码下载
演示地址:http://bbs.hfenxiao.com 因为种处原因在家休假,闲来无事,便将去年关注的一个基于asp.net mvc论坛程序拿出来做了一些调整. 据说PostgreSql是世界上功能 ...