【[CQOI2015]选数】
这道题自然是可以反演的
按照反演的套路我们先设出两个函数
\(F(n)\)表示从\([L,H]\)中任选\(N\)个数的最大公约数是\(n\)或者\(n\)的倍数的情况数
\(f(n)\)表示从\([L,H]\)中任选\(N\)个数的最大公约数是\(n\)的情况数
非常显然的是
\]
\]
开始反演了
首先我们发现我们求\(f(k)\)并不好求,因为没有办法整除分块
所一我们把\(L/k,H/k\)之后求\(f(1)\)就好了
吗?
显然并不行啊
我们考虑一下如果\(L\%k!=0\),\(\left \lfloor \frac{L}{k} \right \rfloor\times k<L\),就会使一些不在\([L,H]\)内的数混进答案里了
所以如果\(L\%k!=0\)的话,除以\(k\)之后再将\(L+1\)
之后就是如何表示\(F\)了
非常显然就是
\]
了
\]
把\(F(i)\)相等的用整除分块处理
但是这道题的\(H\)非常大,甚至都不能线筛
不能线筛杜教筛总可以了吧,于是就可以用\(O(H^{\frac{2}{3}})\)的复杂度解决这道题
#include<iostream>
#include<cstring>
#include<cstdio>
#include<tr1/unordered_map>
#define re register
#define maxn 5000001
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int mod=1000000007;
using namespace std::tr1;
unordered_map<int,int> ma;
int p[maxn>>1],f[maxn],mu[maxn];
inline LL quick(int a,int b)
{
LL S=1;
while(b) {if(b&1) S=S*a%mod;b>>=1;a=(LL)a*(LL)a%mod;}
return S;
}
int N,K,L,H,M;
int solve(int x)
{
if(x<=M) return mu[x];
if(ma.find(x)!=ma.end()) return ma[x];
int ans=1;
for(re int l=2,r;l<=x;l=r+1)
{
r=x/(x/l);
ans-=solve(x/l)*(r-l+1);
}
return ma[x]=ans;
}
int main()
{
scanf("%d%d%d%d",&N,&K,&L,&H);
H/=K;
if(L%K==0) L=L/K;
else L=L/K+1;
M=min(H,5000000);
mu[1]=f[1]=1;
for(re int i=2;i<=M;i++)
{
if(!f[i]) p[++p[0]]=i,mu[i]=-1;
for(re int j=1;j<=p[0]&&p[j]*i<=M;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0) break;
mu[i*p[j]]=-1*mu[i];
}
}
for(re int i=1;i<=M;i++) mu[i]+=mu[i-1];
LL ans=0;L--;
for(re int l=1,r;l<=H;l=r+1)
{
if(!(L/l)) r=H/(H/l);
else r=min(H/(H/l),L/(L/l));
ans=(ans+quick(H/l-L/l,N)*(LL)(solve(r)-solve(l-1))%mod)%mod;
}
printf("%lld\n",((ans%mod)+mod)%mod);
return 0;
}
【[CQOI2015]选数】的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- [CQOI2015]选数(莫比乌斯反演,杜教筛)
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
- CQOI2015 选数
题目 从\([L, H]\)(\(H-L\leq 10^5\))选出\(n\)个整数,使得这些数的最大公约数为\(k\)的方案数. 算法 首先有一个很简单的转化,原问题可以简化为: 从\([\lcei ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
随机推荐
- 字符串匹配问题(lfyzoj)
问题描述 字符串中只含有括号 (),[],<>,{},判断输入的字符串中括号是否匹配.如果括号有互相包含的形式,从内到外必须是<>,(),[],{},例如.输入: [()] 输 ...
- sql = 和<>遵循的sql-92标准的设置SET ANSI_NULLS ON
说明 SQL-92 标准要求在对空值进行等于 (=) 或不等于 (<>) 比较时取值为 FALSE. 当 SET ANSI_NULLS 为 ON 时,即使 column_name 中包含空 ...
- K:顺序表和链表的比较
顺序表和链表是线性表的两种基本实现形式(链表还有多种变化形式),对于这两种实现方式,没有一种方法可以称是最好的,他们各自有着各自的特点和优缺点,适用于不同的应用场景. 与顺序表相比,链表较为灵活, ...
- IAAS,SAAS,PAAS, CaaS的区别
来源:云计算头条微信公众号 作者: 你一定听说过云计算中的三个“高大上”的你一定听说过云计算中的三个“高大上”的概念:IaaS.PaaS和SaaS,这几个术语并不好理解.不过,如果你是个吃货,还 ...
- 原型链中的prototype、__proto__和constructor的关系
先来看一张图,这张图可以说是围绕以下代码完整的描述了各对象之间的关系.接下来我们来看看如何一步步画出这张图. function Foo(){}; var foo = new Foo(); 首先,明确几 ...
- HTML5之新增的元素和废除的元素 (声明:内容节选自《HTML 5从入门到精通》)
新增结构元素: section元素 section元素定义文档或应用程序中的一个区段,比如章节.页眉.页脚或文档中的其他部分.它可以与h1,h2,h3,h4,h5,h6元素结合起来使用,标示文档结构. ...
- 02.php面向对象——构造方法&析构方法
<?php //自己写的构造方法 class Computer{ public function Computer(){ echo '构造方法'; } } new Computer();//这样 ...
- 颤振错误:当前Flutter SDK版本为2.1.0-dev.0.0.flutter-be6309690f?
我刚刚升级了我的扑动,升级后我无法在Android Studio上运行任何扑动项目.我收到此错误消息. The current Dart SDK version -dev.0.0.flutter-be ...
- Climbing Stairs 爬楼梯问题,每次可以走1或2步,爬上n层楼梯总方法 (变相fibonacci)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- MUI框架-09-MUI 与后台数据交互
MUI框架-09-MUI 与后台数据交互 本篇介绍使用 art-template 和原生 MUI 的数据交互 mui.ajax 来实现 我们大家都知道,想要数据交互就要有数据,每次当我们发送请求,我们 ...