Diskrete Mathematik
1.Aussagenlogik
1.1 Gleichwertiges Kalkül
1.2 Normalform
Einfache Disjunktion besteht aus Disjunktion endlicher Aussagensvariable order deren Negation
Einfache Konjunktion besteht aus Konjunktion endlicher Aussagensvariable oder deren Negation
Disjunktive Normalform besteht aus Disjunktion endlicher einfache Konjunktion
Konjunktive Normalform besteht aus Konjunktion endlicher einfache Disjunktion
Als Minimale Aritikel bezeichnen wir einfache Konjunktion
2.Menge
2.1 Das Begriff der Menge
Eine Menge ist ein Verbund, eine Zusammenfassung von einzelnen Elementen
N Tupel Menge hat 2n Teilmenge
2.2 Grundlegend Rechnung der Menge
Menge Berechnungsformel:
3.Binäre Beziehung
3.1 Kartesisches Produkt
Kartesisches Produkt:Wir setzen A,B als Menge voraus,wir benutzen A als erstes Element,B als zweites Element,dann sie setzen geordenetes Paar zusammen.Als A×B werden wir verzeichnen
A×B = {<x,y>|x∈A∩y∈B}
Beispiel:A={a,b},B={0,1,2}
Ergebnis der A×B ist
A×B={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}
Ergebnis der B×A ist
B×A={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}
Eigenschaften:
Kartesisches Produkt kann Kommutativgesetz und Assoziativgesetz nicht entsprechen,aber Distributivgesetz entsprechen
3.2 Berechnung der Menge
Difinitionsmenge:domR = {x|∃y(<x,y>∈R)}
Wertebereich:ranR= {y|∃x(<x,y>∈R)}
Gebiete:fldR = domR∪ranR
Beispiel
4.Graph
4.1 Ungerichtete Graph und gerichtete Graph
Graph G ist eine zwei Tupel <V,E>
V ist eine nicht leer endliche Menge,deren Teilmenge bezeichnen wir als Knoten
E ist eine Kantenmenge,deren Teilmenge bezeichnen wir als Kante
Es gibt nur eine Knoten,ohne Kante,bezeichnen wir es als trivial Graph
Bei ungerichtetem Graph,bezeichnen wir Knoten v,der als Endpunkt besetzt,als Grad
Bei gerichtetem Graph,bezeichnen wir Knoten,der als Startpunkt besetzt,Ausgangsgrad,als d+(v);
bezeichnen wir Knoten,der als Endpunkt besetzt,als Eingangsgrad,als d-(v)
Händeschüttelngesetz:Wir setzen Graph G=<V,E> als ungerichtete order gerichtete Graph voraus,V={v1,v2,...,Vn},|E| = m
Wir setzen Graph G=<V,E> als gerichtete Graph voraus,V={v1,v2,...,Vn},|E| = m
Beim ungerichtete Graph,der ungerichtete Kanten,der hängt mit ein Paar Knoten,großer als eins,bezeichnen wir ihn als parallel Kante
Beim gerichtete Graph,der Kanten,deren Startpunkt und Endpunkt gleich sind,bezeichnen wir sie gerichteten als parallel Kante
Einfaches Graph,ohne parallel und Kreis
G'⊆G und V'=V,bezeichnen wir G' spanning Teilgraph des G
4.2 Weg,Kreis und Anschlussmöglichkeit des Graphs
Wenn jede Kante nur ein Mal vorbeigegangen ist,bezeichnen wir es als einfachen Weg;Wenn v0 = vl,bezeichnen wir es als einfachen Kreis
Wenn jeder Knoten nur ein Mal vorbeigegangen ist,bezeichnen wir es als primär Weg;Wenn v0 = vl,bezeichnen wir es als primär Kreis
Beispiel
Bei einem ungerichtete Graph G,es besteht aus Weg zwischen u und v,bezeichnen es wir als "u und v ist zusammenhängend"
Bei einem ungerichtete Graph G oder trivial Graph G sind beliebig zwei Knoten zusammenhängend,bezeichnen wir es als verbundenes Graph,sonst als nicht verbundenes Graph
Bei einem gerichtete Graph D ignorieren wir alle Richtung der Kanten,bekommen wir gerichtete Graph,das zusammenhängend ist,bezeichnen wir es als schwach verbundenes Graph
Wenn beliebige Knoten des D am mindestens von einem Knoten nach anderem erreichen kann,bezeichnen wir es als einseitig verbundenes Graph
Wenn beliebige Knoten des D von einem Knoten nach anderm erreichen kann,bezeichnen wir es als stark verbundenes Graph
4.3 Martrix des Graph
4.3.1 Assoziationsmatrix
Beispiel
Bei ungerichtetem Graph
Bei gerichtetem Graph
4.3.2 Adjazenzmatrix
Bei gerichtetem Graph
4.4 Kürzester Pfad
4.4.1 dijkstra Algorithmus
Wir verwenden Menge S als aktuell kürzester Pfad,Menge U als Pfadmöglichkeiten
5.Baum
5.1 Huffman Algorithmus
W(Baum) = Die Summe des Verzweigungspunkt
W(Baum) = 42
Diskrete Mathematik的更多相关文章
- 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...
- APS审核经验+审核资料汇总——计算机科学与技术专业上海德语审核
1.APS是什么 德国驻华使馆文化处留德人员审核部(简称APS)成立于2001年7月,是由德国驻华使馆文化处和德意志学术交流中心(DAAD)在北京共同合作成立的服务机构. APS是中国学生前往德国留学 ...
- Mathematik
Ausdruck auf Deutsch Lösen Problem der Abteilung. 求导. Die Abteilung von 3x ist 3. 3x的导数是3 Lösen Prob ...
- 差分进化算法 DE-Differential Evolution
差分进化算法 (Differential Evolution) Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...
- 转债---Pregel: A System for Large-Scale Graph Processing(译)
转载:http://duanple.blog.163.com/blog/static/70971767201281610126277/ 作者:Grzegorz Malewicz, Matthew ...
- DNS配置详解
DNS简介在Linux中,域名服务(DNS)是由柏克莱网间名域(Berkeley Internet Name Domain——BIND)软件实现的.BIND是一个客户/服务系统,它的客户方面称为转换程 ...
- GPU深度发掘(一)::GPGPU数学基础教程
作者:Dominik Göddeke 译者:华文广 Contents 介绍 准备条件 硬件设备要求 软件设备要求 两者选择 初始化OpenGL GLUT OpenGL ...
- c++资源之不完全导引 (转)
c++资源之不完全导引 (转) 转:http://www.cnblogs.com/suiyingjie/archive/2008/02/24/1079411.html 本文2004年5月首发于< ...
- Pregel: A System for Large-Scale Graph Processing(译)
[说明:Pregel这篇是发表在2010年的SIGMOD上,Pregel这个名称是为了纪念欧拉,在他提出的格尼斯堡七桥问题中,那些桥所在的河就叫Pregel.最初是为了解决PageRank计算问题,由 ...
随机推荐
- Varnish 学习资料收集
高性能HTTP加速器Varnish(安装配置篇) 利用Varnish构建Cache服务器笔记 Varnish代理服务器部署 Varnish基础概念详解 Varnish的配置语言VCL及其内置变量介绍 ...
- Elasticsearch中的索引管理和搜索常用命令总结
添加一个index,指定分片是3,副本是1 curl -XPUT "http://10.10.110.125:9200/test_ods" -d' { "settings ...
- 巧用网页开发者工具F12 审查、修改元素、去除广告、屏蔽遮罩
巧用网页开发者工具F12 审查.修改元素.去除广告.屏蔽遮罩 每当打开一个网页的时候,是否为页面有很多广告而烦恼:是否为要操作页面(例如观看超清视频),请先注册登录等等事情而麻烦:是否对网页加锁的视频 ...
- iOS ItunesStore 首页推荐
ItunesStore 首页推荐需要发给苹果一些 app 的相关信息,以及制作一个符合要求的图片. 图片要求可能经过过修改,要求会变化. 以下内容用于参考: 例子 1: Hello, My name ...
- “全栈2019”Java第一百一十章:局部内部类与匿名内部类区别详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- matlab中显示灰阶图像
matlab的数据源文件中400张图片,每张图片是一个112*92的矩阵表示,而400张图片存储在一个cell数组ime中,显示第一张图片,指令是: colormap(gray) imagesc(im ...
- 老调重弹-access注入过主机卫
本文作者:i春秋签约作家——非主流 大家好,我是来自农村的非主流,今天就给在座的各位表演个绝活. 首先打开服务器上安装了主机卫士的网站. 尝试在变量id的值后面插入万恶的单引号,根据报错,我们可以分析 ...
- jquery源码解析:jQuery队列操作queue方法实现的原理
我们先来看一下jQuery中有关队列操作的方法集: 从上图可以看出,既有静态方法,又有实例方法.queue方法,相当于数组中的push操作.dequeue相当于数组的shift操作.举个例子: fun ...
- Ambiguous mapping found. Cannot map 'XXXController' bean method
springMVC报错,原因方法之间@RequestMapping()到了同一个地址,导致springmvc无法定位
- Machine learning第6周编程作业
1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC ...