java用double和float进行小数计算精度不准确

大多数情况下,使用double和float计算的结果是准确的,但是在一些精度要求很高的系统中或者已知的小数计算得到的结果会不准确,这种问题是非常严重的。

《Effective Java》中提到一个原则,那就是float和double只能用来作科学计算或者是工程计算,但在商业计算中我们要用java.math.BigDecimal,通过使用BigDecimal类可以解决上述问题,java的设计者给编程人员提供了一个很有用的类BigDecimal,他可以完善float和double类无法进行精确计算的缺憾。

使用BigDecimal,但一定要用BigDecimal(String)构造器,而千万不要用BigDecimal(double)来构造(也不能将float或double型转换成String再来使用BigDecimal(String)来构造,因为在将float或double转换成String时精度已丢失)。例如new BigDecimal(0.1),它将返回一个BigDecimal,也即0.1000000000000000055511151231257827021181583404541015625,正确使用BigDecimal,程序就可以打印出我们所期望的结果0.9: 
Java代码  
System.out.println(new BigDecimal("2.0").subtract(new BigDecimal("1.10")));// 0.9

另外,如果要比较两个浮点数的大小,要使用BigDecimal的compareTo方法。 

实例代码如下:

package ex;

import java.math.*;

public class BigDecimalDemo {
public static void main(String[] args){
System.out.println(ArithUtil.add(0.01, 0.05));
System.out.println(ArithUtil.sub(1.0, 0.42));
System.out.println(ArithUtil.mul(4.015, ));
System.out.println(ArithUtil.div(123.3, ));
}
} class ArithUtil{
private static final int DEF_DIV_SCALE=; private ArithUtil(){}
//相加
public static double add(double d1,double d2){
BigDecimal b1=new BigDecimal(Double.toString(d1));
BigDecimal b2=new BigDecimal(Double.toString(d2));
return b1.add(b2).doubleValue(); }
//相减
public static double sub(double d1,double d2){
BigDecimal b1=new BigDecimal(Double.toString(d1));
BigDecimal b2=new BigDecimal(Double.toString(d2));
return b1.subtract(b2).doubleValue(); }
//相乘
public static double mul(double d1,double d2){
BigDecimal b1=new BigDecimal(Double.toString(d1));
BigDecimal b2=new BigDecimal(Double.toString(d2));
return b1.multiply(b2).doubleValue(); }
//相除
public static double div(double d1,double d2){ return div(d1,d2,DEF_DIV_SCALE); } public static double div(double d1,double d2,int scale){
if(scale<){
throw new IllegalArgumentException("The scale must be a positive integer or zero");
}
BigDecimal b1=new BigDecimal(Double.toString(d1));
BigDecimal b2=new BigDecimal(Double.toString(d2));
return b1.divide(b2,scale,BigDecimal.ROUND_HALF_UP).doubleValue(); } }

现在我们就详细剖析一下浮点型运算为什么会造成精度丢失?

1、小数的二进制表示问题

首先我们要搞清楚下面两个问题:

     () 十进制整数如何转化为二进制数

           算法很简单。举个例子,11表示成二进制数:

                     /= 余   

                       /=   余   

                       /=   余   

                       /=   余   

                          0结束         11二进制表示为(从下往上):

          这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。

      () 十进制小数如何转化为二进制数

           算法是乘以2直到没有了小数为止。举个例子,.9表示成二进制数

                     0.9*=1.8   取整数部分 

                     0.8(.8的小数部分)*=1.6    取整数部分 

                     0.6*=1.2   取整数部分 

                     0.2*=0.4   取整数部分 

                     0.4*=0.8   取整数部分 

                     0.8*=1.6 取整数部分 

                     0.6*=1.2   取整数部分 

                              .........      .9二进制表示为(从上往下): ......

           注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。

2、 float型在内存中的存储

众所周知、 Java 的float型在内存中占4个字节。float的32个二进制位结构如下

float内存存储结构

             4bytes              ----    ----         

                        表示       实数符号位    指数符号位        指数位          有效数位

        其中符号位1表示正,0表示负。有效位数位24位,其中一位是实数符号位。

         将一个float型转化为内存存储格式的步骤为:

        ()先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
()将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
()从小数点右边第一位开始数出二十三位数字放入第22到第0位。
()如果实数是正的,则在第31位放入“”,否则放入“”。
()如果n 是左移得到的,说明指数是正的,第30位放入“”。如果n是右移得到的或n=,则第30位放入“”。
()如果n是左移得到的,则将n减去1后化为二进制,并在左边加“”补足七位,放入第29到第23位。如果n是右移得到的或n=,则将n化为二进制后在左边加“”补足七位,再各位求反,再放入第29到第23位。 举例说明: .9的内存存储格式 () 将11.9化为二进制后大约是" 1011. 1110011001100110011001100..."。 () 将小数点左移三位到第一个有效位右侧: "1. 011 11100110011001100110 "。 保证有效位数24位,右侧多余的截取(误差在这里产生了 )。 () 这已经有了二十四位有效数字,将最左边一位“”去掉,得到“ ”共23bit。将它放入float存储结构的第22到第0位。 () 因为11.9是正数,因此在第31位实数符号位放入“”。 () 由于我们把小数点左移,因此在第30位指数符号位放入“”。 () 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位。 最后表示11.9为: 再举一个例子:.2356的内存存储格式
()将0.2356化为二进制后大约是0.。
()将小数点右移三位得到1.。
()从小数点右边数出二十三位有效数字,即11100010100000100100000放
入第22到第0位。
()由于0.2356是正的,所以在第31位放入“”。
()由于我们把小数点右移了,所以在第30位放入“”。
()因为小数点被右移了3位,所以将3化为二进制,在左边补“”补足七
位,得到0000011,各位取反,得到1111100,放入第29到第23位。 最后表示0.2356为: 将一个内存存储的float二进制格式转化为十进制的步骤:
()将第22位到第0位的二进制数写出来,在最左边补一位“”,得到二十四位有效数字。将小数点点在最左边那个“”的右边。
()取出第29到第23位所表示的值n。当30位是“”时将n各位求反。当30位是“”时将n增1。
()将小数点左移n位(当30位是“”时)或右移n位(当30位是“”时),得到一个二进制表示的实数。
()将这个二进制实数化为十进制,并根据第31位是“”还是“”加上正号或负号即可。

3、浮点型的减法运算

浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:

() 0操作数的检查;
如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。 () 比较阶码(指数位)大小并完成对阶;
两浮点数进行加减,首先要看两数的 指数位 是否相同,即小数点位置是否对齐。若两数 指数位 相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶 。 如何对 阶(假设两浮点数的指数位为 Ex 和 Ey ):
通过尾数的移位以改变 Ex 或 Ey ,使之相等。 由 于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定使 尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐 ,即小阶的尾数向右移位 ( 相当于小数点左移 ) ,每右移一位,其阶码加 ,直到两数的阶码相等为止,右移的位数等于阶差 △ E 。 () 尾数(有效数位)进行加或减运算; () 结果规格化并进行舍入处理。

java在计算浮点数的时候,由于二进制无法精确表示0.1的值(就好比十进制无法精确表示1/3一样),所以一般会对小数格式化处理.

但是如果涉及到金钱的项目,一点点误差都不能有,必须使用精确运算的时候,就可以使用BigDecimal方法计算.

但是在使用中还需要注意一个问题:

//直接使用double类型数据进行运算
System.out.println(0.05+0.01);
//使用BigDecimal的double参数的构造器
BigDecimal bd1 = new BigDecimal(0.05);
BigDecimal bd2 = new BigDecimal(0.01);
System.out.println(bd1.add(bd2));
//使用BigDecimal的String参数的构造器
BigDecimal bd3 = new BigDecimal("0.05");
BigDecimal bd4 = new BigDecimal("0.01");
System.out.println(bd3.add(bd4));

这三个输出结果是不一样的:

所以在计算的时候,应该先把数字转换成String类型的,才能得到最精确的值.

附常用的方法:

add  加

subtract  减

multiply  乘

divide 除

abs 绝对值

getScale  根据一个规则取几位小数

pow  几次方

中文API链接:

http://www.apihome.cn/api/java/BigDecimal.html

java用double和float进行小数计算精度不准确的更多相关文章

  1. java使double保留两位小数的多方法

    java使double保留两位小数的多方法 java保留两位小数 mport java.text.DecimalFormat; DecimalFormat df = new DecimalFormat ...

  2. 0.1+0.2不等于0.3,微信小程序云开发如何解决JavaScript小数计算精度失准的问题

    先看图 这个是JavaScript语言自身存在的一个问题.说道这里不得不提一下网上流传的JavaScript搞笑图 我们在使用云开发来开发微信小程序的时候,会经常遇到JavaScript小数计算精度失 ...

  3. java使double保留两位小数的多方法 java保留两位小数

    这篇文章主要介绍了java使double类型保留两位小数的方法,大家参考使用吧 复制代码 代码如下: mport java.text.DecimalFormat; DecimalFormat    d ...

  4. Java中double变量精确到小数点后几(2)位

    import java.math.BigDecimal; import java.text.NumberFormat; public class Java中double类型的数据精确到小数点后两位 { ...

  5. js 浮点数计算精度不准确问题

    或许很多人都遇到过,js 对小数的加.减.乘.除时经常得到一些奇怪的结果! 比如 :0.1 + 0.2 = 0.3  ? 这么一个简单的计算,当你用js 计算时会发现结果是:0.30000000000 ...

  6. java中double和float精度丢失问题

    为什么会出现这个问题呢,就这是java和其它计算机语言都会出现的问题,下面我们分析一下为什么会出现这个问题:float和double类型主要是为了科学计算和工程计算而设计的.他们执行二进制浮点运算,这 ...

  7. java防止double和float精度丢失的方法

    在浮点数当中做运算时经常会出现精度丢失的情况,如果做项目不作处理的话会对商家造成很大的影响的.项目尤其是金融相关的项目对这些运算的精度要求较高. 问题原因:首先计算机进行的是二进制运算,我们输入的十进 ...

  8. java中double和float精度丢失问题及解决方法

    在讨论两位double数0.2和0.3相加时,毫无疑问他们相加的结果是0.5.但是问题总是如此吗? 下面我们让下面两个doubles数相加,然后看看输出结果: @Test public void te ...

  9. 关于java使用double还是float

    眼睛一亮在论坛上发现一枚很有价值的评论赶紧抄下来... 记住java一定要用double,更鼓不变,就算数值不大也要用double.了解java虚拟机的底层会知道,float放在内存中其实是当作dou ...

随机推荐

  1. Java学习笔记心得——初识Java

    初识Java 拿到这本厚厚的<Java学习笔记>,翻开目录:Java平台概论.从JDK到TDE.认识对象.封装.继承与多态...看着这些似懂非懂的术语名词,心里怀着些好奇与担忧,就这样我开 ...

  2. Qt+json

    Json文件是这样: { "first fruit": { "describe":"an apple", "icon": ...

  3. POJ 1780 Code(欧拉回路+非递归dfs)

    http://poj.org/problem?id=1780 题意:有个保险箱子是n位数字编码,当正确输入最后一位编码后就会打开(即输入任意多的数字只有最后n位数字有效)……要选择一个好的数字序列,最 ...

  4. 使用javascript模拟常见数据结构(一)

    数据结构和算法可算是每个程序员的必备技能,而随着前端工作的深入,对于数据结构的知识真的是越来越需要掌握了.好了,于是乎最近看了<javascript数据结构和算法>,算是对于后面的使用C语 ...

  5. [转]Cryengine渲染引擎剖析

    转篇Napoleon314 大牛的分析,排版好乱,见谅,耐心读,这是个好东西,注意看他自己的实现,是个技术狂人啊,Ogre焕发次时代的光芒啊~~~努力 ------------------------ ...

  6. Tensorflow一些常用基本概念与函数(一)

    1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf. ...

  7. Rails Guide -- Ruby on Rake(未详细阅读)

    一个软件task管理和build 自动化的工具. 它允许用户指定tasks和describe dependencies, 也可以在一个namespace中group tasks. 使用Ruby语言写的 ...

  8. oracle性能诊断艺术-执行计划

    --case1 --case2 --case3 --case4 --case5 --case6 --case7 --case8 --case9 --case10 --case12 SQL> AL ...

  9. Internet Explorer 11.0.9600.16428 For Windows 7

    官方消息http://blogs.msdn.com/b/ie/archive/2013/11/07/ie11-for-windows-7-globally-available-for-consumer ...

  10. promise的基础知识

    promise 相当于异步操作结果的占位符 它不会去订阅一个事件,也不会传递一个回调函数给目标函数,而是让函数返回一个promise,例如: let promise = readFile('a.txt ...