1147 Heaps(30 分)

In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

Your job is to tell if a given complete binary tree is a heap.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.

Sample Input:

3 8
98 72 86 60 65 12 23 50
8 38 25 58 52 82 70 60
10 28 15 12 34 9 8 56

Sample Output:

Max Heap
50 60 65 72 12 23 86 98
Min Heap
60 58 52 38 82 70 25 8
Not Heap
56 12 34 28 9 8 15 10

题目大意:输入几组完全二叉树的层次遍历序列,判断它是最大堆、最小堆、还是啥都不是。树中节点数N<=1000

//如果只判断是不是堆,完全不用建树,因为是完全二叉树可以利用数组下标,左子树下标为2*i,右子树是2*i+1。然而最终都要给出来后根遍历,所以建树再后根遍历还是比较方便的。

//怎么根据层次遍历建树呢?不会也。。。

#include <iostream>
#include <string>
#include <vector>
#include<cstdio>
using namespace std;
int main() {
int k,n;
cin>>k>>n;
while(k--){
vector<int> tree(n+);
for(int i=;i<=n;i++){
cin>>tree[i];
}
bool flag=true;
for(int i=;*i<=n||*i+<=n;i++){//判断是否是最大堆
if(tree[i]>=tree[*i]&&tree[i]>=tree[*i+])continue;
else{
flag=false;break;
}
}
if(flag)cout<<"Max Heap\n";
else{
flag=true;
for(int i=;*i<=n||*i+<=n;i++){
if(tree[i]<=tree[*i]&&tree[i]<=tree[*i+])continue;
else{
flag=false;break;
}
}
if(flag)cout<<"Min Heap\n";
else cout<<"Not Heap\n";
}
} return ;
}

写出的这个代码在运行样例的时候,出现了以下问题:

第二个最小堆,判断不是最小堆,突然发现是因为代码里,寻址了不存在的单元!这样的话那个单元是一个很大的负值,那么最大堆当然是可以判断了,但是最小堆就出现了问题!

//那如果那样去判断的话,可就是很复杂了。。。放弃。

//看到大佬28行的代码,内心是震惊的。。

代码来自:https://www.liuchuo.net/archives/4667

#include <iostream>
#include <vector>
using namespace std;
int m, n;
vector<int> v;
void postOrder(int index) {//原来可以根据下标遍历完全二叉树啊!
if (index >= n) return;
postOrder(index * + );
postOrder(index * + );//就算index * 2 + 2那么就会return,正好是递归出口。
printf("%d%s", v[index], index == ? "\n" : " ");
//如果遍历到最终根节点即index=0,那么
}
int main() {
scanf("%d%d", &m, &n);
v.resize(n);//其实完全可以只用一个向量,因为新输入的会将原来的覆盖。
for (int i = ; i < m; i++) {
for (int j = ; j < n; j++) scanf("%d", &v[j]);
int flag = v[] > v[] ? : -;//根据这个判断可能的情况。
for (int j = ; j <= (n-) / ; j++) {//原来可以这样限制j的范围。
int left = j * + , right = j * + ;
//因为只有右边的会超,所以只控制右边即可。
//厉害了,反过来进行判断。
if (flag == && (v[j] < v[left] || (right < n && v[j] < v[right]))) flag = ;
if (flag == - && (v[j] > v[left] || (right < n && v[j] > v[right]))) flag = ;
}
if (flag == ) printf("Not Heap\n");
else printf("%s Heap\n", flag == ? "Max" : "Min");//这一句厉害厉害。
postOrder();
}
return ;
}

//真是太厉害了,再判断是否是堆以及后根遍历的时候,我还需要时间消化

PAT 1147 Heaps[难]的更多相关文章

  1. [PAT] 1147 Heaps(30 分)

    1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...

  2. PAT 1147 Heaps

    https://pintia.cn/problem-sets/994805342720868352/problems/994805342821531648 In computer science, a ...

  3. PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)   In computer science, a heap is a specialized tree-based data structure that sati ...

  4. 1147 Heaps

    1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...

  5. PAT甲级——1147 Heaps【30】

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  6. PAT Advanced 1147 Heaps (30) [堆,树的遍历]

    题目 In computer science, a heap is a specialized tree-based data structure that satisfies the heap pr ...

  7. PAT A1147 Heaps (30 分)——完全二叉树,层序遍历,后序遍历

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  8. PAT 1057 Stack [难][树状数组]

    1057 Stack (30)(30 分) Stack is one of the most fundamental data structures, which is based on the pr ...

  9. 1147. Heaps (30)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

随机推荐

  1. 使用Dreamweaver开发php

    1.新建站点,开发的目录 2.服务器,服务器的目录   (并修改为“测试”) 3.必须结合WANP5

  2. 【java】 java设计模式(3):单例模式(Singleton)

    单例对象(Singleton)是一种常用的设计模式.在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在.这样的模式有几个好处: 1.某些类创建比较频繁,对于一些大型的对象,这是一笔 ...

  3. nyoj-655-光棍的yy(大数)

    光棍的yy 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描写叙述 yy常常遇见一个奇怪的事情.每当他看时间的时候总会看见11:11,这个非常纠结啊. 如今给你m个1,你能够 ...

  4. BI产品学习笔记

    理解现在--挖掘规律--预测未来------------------------------------------------------精准营销智能风控运营优化 多维分析挖掘预测敏捷BI 分析展示 ...

  5. python2.0_s12_day12_css样式详解

    CSScss是英文Cascading Style Sheets的缩写,称为层叠样式表,用于对页面进行美化. CSS 存放方式有三种: 一种写法:在<body></body>内部 ...

  6. ELK5.X+logback搭建日志平台

    一.背景 当生产环境web服务器做了负载集群后,查询每个tomcat下的日志无疑是一件麻烦的事,elk为我们提供了快速查看日志的方法. 二.环境 CentOS7.JDK8.这里使用了ELK5.0.0( ...

  7. memset和memcpy函数、atoi函数

    memset void *memset(void *s,int c,size_t n) 总的作用:将已开辟内存空间 s 的首 n 个字节的值设为值 c.如下: // 1.将已开辟内存空间s的首n个字节 ...

  8. 《C++ Primer Plus》15.5 类型转换运算符 学习笔记

    C++相对C更严格地限制允许的类型转换,并添加4个类型转换运算符,是转换过程更规范:* dynamic_cast:* const_cast:* static_cast:* reinterpret_ca ...

  9. c++中new/operator new/placement new

    1. new/delete c++中的new(和对应的delete)是对堆内存进行申请和释放,且两个都不能被重载. 2. operator new/operator delete c++中如果想要实现 ...

  10. vux 头像上传

    参考: http://blog.csdn.net/generon/article/details/72478269