Python3:pyecharts数据可视化插件
Python3:pyecharts数据可视化插件
一、简介
pyecharts 是一个用于生成 Echarts 图表的类库。 Echarts 是百度开源的一个数据可视化 JS 库。主要用于数据可视化。
二、安装
pip install pyecharts
在线安装不成功,采用离线插件whl安装:
(1)下载:pyecharts-0.1.9.4-py2.py3-none-any.whl
(2)然后进入到所咋的文件夹,执行安装命令:
D:\whl>pip install pyecharts-0.1.9.4-py2.py3-none-any.whl
三、示例
1,代码:
from pyecharts import Bar
bar =Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
bar.show_config()
bar.render()
2,效果:
3,分析:
Tip:可以按右边的下载按钮将图片下载到本地;
add():主要方法,用于添加图表的数据和设置各种配置项
show_config():打印输出图表的所有配置项
render():默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render(r"e:my_first_chart.html"),文件用浏览器打开。
默认的编码类型为 UTF-8,在 Python3 中是没什么问题的,Python3 对中文的支持好很多。但是在 Python2 中,编码的处理是个很头疼的问题,暂时没能找到完美的解决方法,目前只能通过文本编辑器自己进行二次编码,我用的是 Visual Studio Code,先通过 Gbk 编码重新打开,然后再用 UTF-8 重新保存,这样用浏览器打开的话就不会出现中文乱码问题了。
基本上所有的图表类型都是这样绘制的:
chart_name = Type() 初始化具体类型图表。
add() 添加数据及配置项。
render() 生成 .html 文件。
四、图表类型
1,Bar(柱状图/条形图)
1.1 示例1:
from pyecharts import Bar
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[20, 40, 60, 80, 100, 120]
v2 =[10, 20, 30, 40, 120, 80]
bar =Bar("标记线和标记点示例")
bar.add("商家A", attr, v1, mark_point=["average"])
bar.add("商家B", attr, v2, mark_line=["min", "max"])
bar.render()
效果:
1.2 示例2:
from pyecharts import Bar
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[20, 40, 60, 80, 100, 120]
v2 =[10, 20, 30, 40, 120, 80]
bar =Bar("x 轴和 y 轴交换")
bar.add("商家A", attr, v1)
bar.add("商家B", attr, v2, is_convert=True)
bar.render()
效果:
2,EffectScatter(带有涟漪特效动画的散点图)
#示例2:EffectScatter(带有涟漪特效动画的散点图)
from pyecharts import EffectScatter
v1 =[10, 20, 30, 40, 50, 60]
v2 =[25, 20, 15, 10, 60, 33]
es =EffectScatter("动态散点图示例")
es.add("effectScatter", v1, v2)
es.render()
es =EffectScatter("动态散点图各种图形示例")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.render()
效果:
3,Funnel(漏斗图)
#示例四:Funnel(漏斗图)
from pyecharts import Funnel
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value =[20, 40, 60, 80, 100, 120]
funnel =Funnel("漏斗图示例")
funnel.add("商品", attr, value, is_label_show=True, label_pos="inside", label_text_color="#fff")
funnel.render()
效果:
4,Gauge(仪表盘)
#示例五: Gauge(仪表盘)
from pyecharts import Gauge
gauge =Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge.show_config()
gauge.render()
效果:
5,Geo(地理坐标系)
5.1 示例1:
#示例5: Geo(地理坐标系)
#5.1
from pyecharts import Geo
data=[("海门",9),("鄂尔多斯",12),("招远",12),("舟山",12),("齐齐哈尔",14),("盐城",15),("赤峰",16),("青岛",18),("乳山",18),("金昌",19),("泉州",21),("莱西",21), ("日照",21),("胶南",22),("南通",23),("拉萨",24),("云浮",24),("梅州",25)]
geo=Geo("全国主要城市空气质量","data from pm2.5",title_color="#fff",title_pos="center",width=1200,height=600,background_color='#404a59')
attr,value=geo.cast(data)
geo.add("",attr,value,visual_range=[0,200],visual_text_color="#fff",symbol_size=15,is_visualmap=True)
geo.show_config()
geo.render()
效果:
5.2 示例2:
#6.2
from pyecharts import Geo
data =[("海门", 9), ("鄂尔多斯", 12), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15)]
geo =Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600, background_color='#404a59')
attr, value =geo.cast(data)
geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5)
geo.show_config()
geo.render()
效果:
6, Graph(关系图)
6.1 示例1:
#示例6:Graph(关系图)
#6.1
from pyecharts import Graph
nodes =[{"name": "结点1", "symbolSize": 10}, {"name": "结点2", "symbolSize": 20}, {"name": "结点3", "symbolSize": 30}, {"name": "结点4", "symbolSize": 40}, {"name": "结点5", "symbolSize": 50}, {"name": "结点6", "symbolSize": 40}, {"name": "结点7", "symbolSize": 30}, {"name": "结点8", "symbolSize": 20}]
links =[]
for i in nodes:
for j in nodes:
links.append({"source": i.get('name'), "target": j.get('name')})
graph =Graph("关系图-环形布局示例")
graph.add("", nodes, links, is_label_show=True, repulsion=8000, layout='circular', label_text_color=None)
graph.show_config()
graph.render()
效果:
6.2 示例2:
#6.2
from pyecharts import Graph
import json
with open("..jsonweibo.json","r",encoding="utf-8") as f:
j =json.load(f)
nodes, links,categories,cont,mid,userl=jgraph=Graph("微博转发关系图", width=1200, height=600)
graph.add("",nodes,links,categories,label_pos="right", repulsion=50, is_legend_show=False, line_curve=0.2, label_text_color=None)
graph.show_config()
graph.render()
效果:待测试
7,Line(折线/面积图)
7.1 示例1:
#示例7:Line(折线/面积图)
from pyecharts import Line
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]
line =Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average"])
line.add("商家B", attr, v2, is_smooth=True, mark_line=["max", "average"])
line.show_config()
line.render()
效果:
7.2 示例2:
#7.2
from pyecharts import Line
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]
line =Line("折线图-阶梯图示例")
line.add("商家A", attr, v1, is_step=True, is_label_show=True)
line.show_config()
line.render()
效果:
7.3 示例3:
#7.3
from pyecharts import Line
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]
line =Line("折线图-面积图示例")
line.add("商家A", attr, v1, is_fill=True, line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add("商家B", attr, v2, is_fill=True, area_color='#000', area_opacity=0.3, is_smooth=True)
line.show_config()
line.render()
效果:
8,Liquid(水球图)
8.1 示例1:
#8.1
from pyecharts import Liquid
liquid =Liquid("水球图示例")
liquid.add("Liquid", [0.6])
liquid.show_config()
liquid.render()
效果:
8.2 示例2:
#8.2
from pyecharts import Liquid
liquid =Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_outline_show=False)
liquid.show_config()
liquid.render()
效果:
8.3 示例3:
#8.3
from pyecharts import Liquid
liquid =Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_animation=False, shape='diamond')
liquid.show_config()
liquid.render()
效果:
9,Map(地图)
9.1 示例1:
#9.1
from pyecharts import Map
value =[155, 10, 66, 78, 33, 80, 190, 53, 49.6]
attr =["福建", "山东", "北京", "上海", "甘肃", "新疆", "河南", "广西", "西藏"]
map=Map("Map 结合 VisualMap 示例", width=1200, height=600)
map.add("", attr, value, maptype='china', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
效果:
9.2 示例2:
#9.2
from pyecharts import Map
value =[20, 190, 253, 77, 65]
attr =['汕头市', '汕尾市', '揭阳市', '阳江市', '肇庆市']
map=Map("广东地图示例", width=1200, height=600)
map.add("", attr, value, maptype='广东', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
效果:
10,Parallel(平行坐标系)
#示例十一:Parallel(平行坐标系)
from pyecharts import Parallel
c_schema =[ {"dim": 0, "name": "data"}, {"dim": 1, "name": "AQI"}, {"dim": 2, "name": "PM2.5"}, {"dim": 3, "name": "PM10"}, {"dim": 4, "name": "CO"}, {"dim": 5, "name": "NO2"}, {"dim": 6, "name": "CO2"}, {"dim": 7, "name": "等级", "type": "category", "data": ['优', '良', '轻度污染', '中度污染', '重度污染', '严重污染']}]
data =[ [1, 91, 45, 125, 0.82, 34, 23, "良"], [2, 65, 27, 78, 0.86, 45, 29, "良"], [3, 83, 60, 84, 1.09, 73, 27, "良"], [4, 109, 81, 121, 1.28, 68, 51, "轻度污染"], [5, 106, 77, 114, 1.07, 55, 51, "轻度污染"], [6, 109, 81, 121, 1.28, 68, 51, "轻度污染"], [7, 106, 77, 114, 1.07, 55, 51, "轻度污染"], [8, 89, 65, 78, 0.86, 51, 26, "良"], [9, 53, 33, 47, 0.64, 50, 17, "良"], [10, 80, 55, 80, 1.01, 75, 24, "良"], [11, 117, 81, 124, 1.03, 45, 24, "轻度污染"], [12, 99, 71, 142, 1.1, 62, 42, "良"], [13, 95, 69, 130, 1.28, 74, 50, "良"], [14, 116, 87, 131, 1.47, 84, 40, "轻度污染"]]
parallel =Parallel("平行坐标系-用户自定义指示器")
parallel.config(c_schema=c_schema)
parallel.add("parallel", data)
parallel.show_config()
parallel.render()
效果:
11, Pie(饼图)
11.1 示例1:
#11.1
from pyecharts import Pie
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[11, 12, 13, 10, 10, 10]
pie =Pie("饼图示例")
pie.add("", attr, v1, is_label_show=True)
pie.show_config()
pie.render()
效果:
11.2 示例2:
#11.2
from pyecharts import Pie
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[11, 12, 13, 10, 10, 10]
v2 =[19, 21, 32, 20, 20, 33]
pie =Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area', is_legend_show=False, is_label_show=True)
pie.show_config()
pie.render()
效果:
12,Polar(极坐标系)
12.1 示例1:
#12.1
from pyecharts import Polar
radius =['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar =Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("A", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("B", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("C", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barRadius', is_stack=True)
polar.show_config()
polar.render()
效果:
12.2 示例2:
#12.2
from pyecharts import Polar
radius =['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar =Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barAngle', is_stack=True)
polar.show_config()
polar.render()
效果:
13,Radar(雷达图)
13.1 示例1:
#13.1
from pyecharts import Radar
schema =[ ("销售", 6500), ("管理", 16000), ("信息技术", 30000), ("客服", 38000), ("研发", 52000), ("市场", 25000)]
v1 =[[4300, 10000, 28000, 35000, 50000, 19000]]
v2 =[[5000, 14000, 28000, 31000, 42000, 21000]]
radar =Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False)
radar.show_config()
radar.render()
效果:
13.2 示例2:
#13.2
from pyecharts import Radar
value_bj =[[55, 9, 56, 0.46, 18, 6, 1], [25, 11, 21, 0.65, 34, 9, 2], [56, 7, 63, 0.3, 14, 5, 3], [33, 7, 29, 0.33, 16, 6, 4]]
value_sh =[[91, 45, 125, 0.82, 34, 23, 1], [65, 27, 78, 0.86, 45, 29, 2], [83, 60, 84, 1.09, 73, 27, 3], [109, 81, 121, 1.28, 68, 51, 4]]
c_schema=[{"name": "AQI", "max": 300, "min": 5}, {"name": "PM2.5", "max": 250, "min": 20}, {"name": "PM10", "max": 300, "min": 5}, {"name": "CO", "max": 5}, {"name": "NO2", "max": 200}, {"name": "SO2", "max": 100}]
radar =Radar()
radar.config(c_schema=c_schema, shape='circle')
radar.add("北京", value_bj, item_color="#f9713c", symbol=None)
radar.add("上海", value_sh, item_color="#b3e4a1", symbol=None)
radar.show_config()
radar.render()
效果:
14,Scatter(散点图)
14.1 示例1:
#14.1
from pyecharts import Scatter
v1 =[10, 20, 30, 40, 50, 60]
v2 =[10, 20, 30, 40, 50, 60]
scatter =Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.show_config()
scatter.render()
效果:
14.2 示例2:散点打印Pyecharts字体(先准备一张png图片)
from pyecharts import Scatter
scatter =Scatter("散点图示例")
v1, v2 =scatter.draw("pyecharts-0.png")
scatter.add("pyecharts", v1, v2, is_random=True)
scatter.show_config()
scatter.render()
效果:
15, WordCloud(词云图)
15.1 示例1:
#15.1
from pyecharts import WordCloud
name =['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications', 'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp', 'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham', 'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value =[10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
wordcloud =WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.show_config()
wordcloud.render()
效果:
15.2 示例2:
#15.2
from pyecharts import WordCloud
name =['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications', 'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp', 'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham', 'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value =[10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
wordcloud =WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[30, 100], shape='diamond')
wordcloud.show_config()
wordcloud.render()
效果:
五、用户自定义
用户还可以自定义结合 Line/Bar 图表
需使用 get_series() 和 custom() 方法
get_series():获取图表的 series 数据;
custom(series):追加自定义图表类型;
series -> dict:追加图表类型的 series 数据;
先用 get_series() 获取数据,再使用 custom() 将图表结合在一起;
示例代码:
#示例:自定义图标类型
from pyecharts import Bar, Line
attr =['A', 'B', 'C', 'D', 'E', 'F']
v1 =[10, 20, 30, 40, 50, 60]
v2 =[15, 25, 35, 45, 55, 65]
v3 =[38, 28, 58, 48, 78, 68]
bar =Bar("Line - Bar 示例")
bar.add("bar", attr, v1)
line =Line()
line.add("line", v2, v3)
bar.custom(line.get_series())
bar.show_config()
bar.render()
效果:
六、示例
6.1,用极坐标系画出一个爱心,代码:
#示例:用极坐标系画出一个爱心
import math
from pyecharts import Polar
data =[]
for i in range(101):
theta =i /100*360
r =5*(1+math.sin(theta /180*math.pi))
data.append([r, theta])
hour =[i for i in range(1, 25)]
polar =Polar("极坐标系示例", width=1200, height=600)
polar.add("Love", data, angle_data=hour, boundary_gap=False,start_angle=0)
polar.show_config()
polar.render()
效果:
6.2 用极坐标系画出一朵小花,代码:
import math
from pyecharts import Polar
data =[]
for i in range(361):
t =i /180*math.pi
r =math.sin(2*t) *math.cos(2*t)
data.append([r, i])
polar =Polar("极坐标系示例", width=1200, height=600)
polar.add("Flower", data, start_angle=0, symbol=None, axis_range=[0, None])
polar.show_config()
polar.render()
效果:
6.3 涂上颜色的小红花,代码:
#示例:涂上颜色的小红花
import math
from pyecharts import Polar
data =[]
for i in range(361):
t =i /180*math.pi
r =math.sin(2*t) *math.cos(2*t)
data.append([r, i])
polar =Polar("极坐标系示例", width=1200, height=600)
polar.add("Color-Flower", data, start_angle=0, symbol=None, axis_range=[0, None], area_color="#f71f24", area_opacity=0.6)
polar.show_config()
polar.render()
效果:
6.4 用散点图画出一个爱心,代码:
from pyecharts import Scatter
scatter =Scatter("散点图示例", width=800, height=480)
v1 ,v2 =scatter.draw("love.png")
scatter.add("Love", v1, v2)
scatter.render()
效果:
6.5 用散点图画出一个火辣的 Bra,代码:
from pyecharts import Scatter
scatter =Scatter("散点图示例", width=1000, height=480)
v1 ,v2 =scatter.draw("cup.png")
scatter.add("Cup", v1, v2)
scatter.render()
效果:
6.6 某地最低温和最高气温折线图,代码:
from pyecharts import Line
attr =['周一', '周二', '周三', '周四', '周五', '周六', '周日', ]
line =Line("折线图示例")
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"])
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"], mark_line=["average"], yaxis_formatter="°C")
line.show_config()
line.render()
效果:
6.7 饼图嵌套,代码:
from pyecharts import Pie
pie =Pie("饼图示例", title_pos='center', width=1000, height=600)
pie.add("", ['A', 'B', 'C', 'D', 'E', 'F'], [335, 321, 234, 135, 251, 148], radius=[40, 55],is_label_show=True)
pie.add("", ['H', 'I', 'J'], [335, 679, 204], radius=[0, 30], legend_orient='vertical', legend_pos='left')
pie.show_config()
pie.render()
效果:
6.8 饼图再嵌套,代码:
import random
from pyecharts import Pie
attr =['A', 'B', 'C', 'D', 'E', 'F']
pie =Pie("饼图示例", width=1000, height=600)
pie.add("", attr, [random.randint(0, 100) for _ in range(6)], radius=[50, 55], center=[25, 50],is_random=True)
pie.add("", attr, [random.randint(20, 100) for _ in range(6)], radius=[0, 45], center=[25, 50],rosetype='area')
pie.add("", attr, [random.randint(0, 100) for _ in range(6)], radius=[50, 55], center=[65, 50],is_random=True)
pie.add("", attr, [random.randint(20, 100) for _ in range(6)], radius=[0, 45], center=[65, 50],rosetype='radius')
pie.show_config()
pie.render()
效果:
6.9 某地的降水量和蒸发量柱状图,代码:
from pyecharts import Bar
attr =["{}月".format(i) for i in range(1, 13)]
v1 =[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 =[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
bar =Bar("柱状图示例")
bar.add("蒸发量", attr, v1, mark_line=["average"], mark_point=["max", "min"])
bar.add("降水量", attr, v2, mark_line=["average"], mark_point=["max", "min"])
bar.show_config()
bar.render()
效果:
6.10 各类电影中"好片"所占的比例,代码:
from pyecharts import Pie
pie =Pie('各类电影中"好片"所占的比例', "数据来着豆瓣", title_pos='center')
pie.add("", ["剧情", ""], [25, 75], center=[10, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, )
pie.add("", ["奇幻", ""], [24, 76], center=[30, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, legend_pos='left')
pie.add("", ["爱情", ""], [14, 86], center=[50, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["惊悚", ""], [11, 89], center=[70, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["冒险", ""], [27, 73], center=[90, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["动作", ""], [15, 85], center=[10, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["喜剧", ""], [54, 46], center=[30, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["科幻", ""], [26, 74], center=[50, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["悬疑", ""], [25, 75], center=[70, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["犯罪", ""], [28, 72], center=[90, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, is_legend_show=True, legend_top="center")
pie.show_config()
pie.render()
效果:
6.11 用极坐标系画出一个蜗牛壳,代码:
import math
from pyecharts import Polar
data =[]
for i in range(5):
for j in range(101):
theta =j /100*360
alpha =i *360+theta
r =math.pow(math.e, 0.003*alpha)
data.append([r, theta])
polar =Polar("极坐标系示例")
polar.add("", data, symbol_size=0, symbol='circle', start_angle=-25, is_radiusaxis_show=False, area_color="#f3c5b3", area_opacity=0.5, is_angleaxis_show=False)
polar.show_config()
polar.render()
效果:
Python3:pyecharts数据可视化插件的更多相关文章
- 1.前端数据可视化插件:Highcharts、Echarts和D3(区别)
前端数据可视化插件有很多,但我用过的只有Highcharts(https://www.hcharts.cn/).Echarts(http://echarts.baidu.com/)和D3(https: ...
- 基于World Wind的数据可视化插件
基于开源数据可视化类库(MSChart.VTK.D3)实现的组件样例,并基于World Wind实现调用上述组件的功能插件. GitHub下载地址:https://github.com/hujiuli ...
- pyecharts数据可视化模块
目录 安装 柱状图-Bar 饼图-Pie 箱体图-Boxplot 折线图-Line 雷达图-Rader 散点图-scatter 我们都知道python上的一款可视化工具matplotlib,而前些阵子 ...
- 利用selenium 爬取豆瓣 武林外传数据并且完成 数据可视化 情绪分析
全文的步骤可以大概分为几步: 一:数据获取,利用selenium+多进程(linux上selenium 多进程可能会有问题)+kafka写数据(linux首选必选耦合)windows直接采用的是写my ...
- Python:数据可视化pyecharts的使用
什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生 ...
- python的数据可视化库 matplotlib 和 pyecharts
Matplotlib大家都很熟悉 不谈. ---------------------------------------------------------------------------- ...
- 数据可视化之pyecharts
Echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 安装 ...
- 【PyQt5-Qt Designer】PyQt5+pyecharts 实现GUI界面的数据可视化展示
先用纯Python代码写一个简单的小案例: from PyQt5.QtCore import QUrl from PyQt5.QtWidgets import QApplication,QWidget ...
- python3项目之数据可视化
数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联. 数据科学家使用Python编写了一系列令人印象深刻的可视化和分析工具,其中很多也可供 ...
随机推荐
- c++11实现异步定时器
c++11提供了丰富的时间和线程操作函数,比如 std::this_thread::sleep, std::chrono::seconds等.可以利用这些来很方便的实现一个定时器. 定时器要求 ...
- TCP关闭连接(为什么会能Time_wait,Close_wait?)
版权声明:本文由胡文斌原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/102 来源:腾云阁 https://www.qclo ...
- 存储总量达20T的MySQL实例,如何完成迁移?
版权声明:本文由王亮原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/122 来源:腾云阁 https://www.qclou ...
- Android 系统镜像: boot.img kernel.img ramdisk.img system.img userdata.img cache.img recovery.img
boot.img(kernel.img+ramdisk.img) ramdisk.img(/) system.img(/system) userdata.img(/data) cache.img(/c ...
- CentOS下安装cvechecker并进行主机基线安全检查
一.cvechecker的安装 1.首先下载cvechecker并解压该文件: cd /home/username mkdir cve wget https://raw.githubuserconte ...
- 【BZOJ4698】Sdoi2008 Sandy的卡片 后缀数组+RMQ
[BZOJ4698]Sdoi2008 Sandy的卡片 Description Sandy和Sue的热衷于收集干脆面中的卡片.然而,Sue收集卡片是因为卡片上漂亮的人物形象,而Sandy则是为了积攒卡 ...
- 170726、常用 Git 命令清单
,下面是我整理的常用 Git 命令清单.几个专用名词的译名如下: Workspace:工作区 Index / Stage:暂存区 Repository:仓库区(或本地仓库) Remote:远程仓库 一 ...
- 14.Git忽略特殊文件.gitignore
有些时候,你必须把某些文件放到Git工作目录中,但又不能提交它们,比如保存了数据库密码的配置文件啦,等等,每次git status都会显示Untracked files ...,有强迫症的童鞋心里肯定 ...
- qt——类大全
qt类总结地址 http://www.kuqin.com/qtdocument/ QWidget.QDialog及QMainWindow的区别 QWidget类是所有用户界面对象的基类. 窗口部件是用 ...
- (2.8)Mysql之SQL基础——索引的分类与使用
(2.8)Mysql之SQL基础——索引的分类与使用 关键字:mysql索引,mysql增加索引,mysql修改索引,mysql删除索引 按逻辑分类: 1.主键索引(聚集索引)(也是唯一索引,不允许有 ...