【转载】IEEE754 学习总结
以下是参考《IEEE754 学习总结》并结合自己学习总结
一:前言
二:预备知识
三:浮点数的表示范围
四:将浮点格式转换成十进制数
一:前言
前不久在分析一个程序的过程中遇到了浮点运算,也就顺便学习了一下浮点数的存放格式(IEEE754标准),此文仅作为总结,其中举了几个典型的例子,如果你想深入了解IEEE754标准,我想本文并不太适合您。
二:预备知识
-----------------------------------------------------------------------
值 存储为 指数偏移量(阶码) 尾数部分
real*4 1位符号位(s)、8位指数(e),23位尾数(m,共32位) 127(7FH)
real*8 1位符号位(s)、11位指数(e),52位尾数(m,共64位) 1023(3FFH)
real*10 1位符号位(s)、15位指数(e),64位尾数(m,共80位) 16383(3FFFH)
-----------------------------------------------------------------------
计算公式:
V=(-1)^s*2^E*M
当e(各位)为全'0'时,E=1-(2^(e(位数)-1)-1),;M=m。
如:real*4是8位,E=1-(2^(8-1)-1)=1-127=-126
即,
在real*4时:
V=(-1)^s*2^(-126)*m
在real*8时:
V=(-1)^s*2^(-1022)*m
当e(各位)不为全'0'且不为全'1'时,E=e(值)-(2^(e(位数)-1)-1);M=1+m。
即,
在real*4时:
V=(-1)^s*2^(e(值)-127)*(1+m)
在real*8时:
V=(-1)^s*2^(e(值)-1023)*(1+m)
三:浮点数的表示范围:
通常,可以用下面的格式来表示浮点数:
S | P | M |
根据IEEE(美国电气和电子工程师学会)754标准中的定 义,单精度(Single Precision)浮点数是32位(即4字节)的,双精度(Double Precision)浮点数是64位(即8字节)的。两者的S、P、M所占的位数以及表示方法由下表可知:
S | P | M | 表示公式 | 偏移量 | |
单精度浮点数 |
1(第31位) |
8(30到23位) |
23(22到0位) |
(-1)^S*2(P-127)*1.M |
127 |
双精度浮点数 |
1(第63位) |
11(62到52位) |
52(51到0位) |
(-1)^S*2(P-1023)*1.M |
1023 |
P是阶码,通常使用移码表示(移码和补码只有符号位相 反,其余都一样。对于正数而言,原码、反码和补码都一样;对于负数而言,补码就是其绝对值的原码全部取反,然后加1)。阶码可以为正数,也可以为负数,为 了处理负指数的情况,实际的指数值按要求需要加上一个偏差(Bias)值作为保存在指数域中的值,单精度数的偏差值为127,双精度数的偏差值为 1023。例如,单精度的实际指数值0在指数域中将保存为127,而保存在指数域中的64则表示实际的指数值-63,偏差的引入使得对于单精度数,实际可 以表达的指数值的范围就变成-127到128之间(包含两端)。
M为尾数,其中单精度数为23位长,双精度数为52位长。IEEE标准要求浮 点数必须是规范的。这意味着尾数的小数点左侧必须为1,因此在保存尾数的时候,可以省略小数点前面这个1,从而腾出一个二进制位来保存更多的尾数。这样实 际上用23位长的尾数域表达了24位的尾数。例如对于单精度数而言,二进制的1001.101(对应于十进制的9.625)可以表达为1.001101 × 23,所以实际保存在尾数域中的值为00110100000000000000000,即去掉小数点左侧的1,并用0在右侧补齐。
根据标准 要求,无法精确保存的值必须向最接近的可保存的值进行舍入,即不足一半则舍,一半以上(包括一半)则进。不过对于二进制浮点数而言,还多一条规矩,就是当 需要舍入的值刚好是一半时,不是简单地进,而是在前后两个等距接近的可保存的值中,取其中最后一位有效数字为零者。
据以上分析,IEEE 754标准中定义浮点数的表示范围为:
二进制(Binary) |
十进制(Decimal) |
|
单精度浮点数 |
± (2-2^-23) × 2127 |
~ ± 10^38.53 |
双精度浮点数 |
± (2-2^-52) × 21023 |
~ ± 10^308.25 |
1、浮点数的表示约定
单精度浮点数和双精度浮点数都是用IEEE 754标准定义的,其中有一些特殊约定,例如:
1、当P=0,M=0时,表示0。
2、当P=255,M=0时,表示无穷大,用符号位来确定是正无穷大还是负无穷大。
3、当P=255,M≠0时,表示NaN(Not a Number,不是一个数)。
2、非规范浮点数
当 两个绝对值极小的浮点数相减后,其差值的指数可能超出允许范围,最终只能近似为0。为了解决此类问题,IEEE标准中引入了非规范 (Denormalized)浮点数,规定当浮点数的指数为允许的最小指数值时,尾数不必是规范化(Normalized)的。有了非规范浮点数,去掉了 隐含的尾数位的制约,可以保存绝对值更小的浮点数。而且,由于不再受到隐含尾数域的制约,上述关于极小差值的问题也不存在了,因为所有可以保存的浮点数之 间的差值同样可以保存。
根据IEEE 754标准中的定义,规范和非规范浮点数的表示范围可归纳为下表:
规范浮点数 |
非规范浮点数 |
十进制近似范围 |
|
单精度浮点数 |
± 2^-149 至 (1-2^-23)*2^-126 |
± 2^-126 至 (2-2^-23)*2^127 |
± ~10^-44.85 至 ~10^38.53 |
双精度浮点数 |
± 2^-1074 至 (1-2^-52)*2^-1022 |
± 2^-1022 至 (2-2^-52)*2^1023 |
± ~10^-323.3 至 ~10^308.3 |
本文的结论基于IEEE 754标准,另外一个标准是IEEE 854,这个标准是关于十进制浮点数的,但没有规定具体格式,所以很少被采用。另外,从2000年开始,IEEE 754开始修订,被称为IEEE 754R,目的是融合IEEE 754和IEEE 854标准。该标准在浮点格式方面的修订有:1、加入了16位和128位的二进制浮点数格式;2、加入了十进制浮点数格式,采用了IBM公司提出的格式。
四:将浮点格式转换成十进制数
[例3.1]:
0x00280000(real*4)
转换成二进制
00000000001010000000000000000000
符号位 指数部分(8位) 尾数部分
0 00000000 01010000000000000000000
符号位=0;因指数部分=0,则:尾数部分M为m:
0.01010000000000000000000=0.3125
该浮点数的十进制为:
(-1)^0*2^(-126)*0.3125
=3.6734198463196484624023016788195e-39
[例3.2]:
0xC04E000000000000(real*8)
转换成二进制
1100000001001110000000000000000000000000000000000000000000000000
符号位 指数部分(11位) 尾数部分
1 10000000100 1110000000000000000000000000000000000000000000000000
符号位=1;指数=1028,因指数部分不为全'0'且不为全'1',则:尾数部分M为1+m:
1.1110000000000000000000000000000000000000000000000000=1.875
该浮点数的十进制为:
(-1)^1*2^(1028-1023)*1.875
=-60
四:将十进制数转换成浮点格式(real*4)
[例4.1]:
26.0
十进制26.0转换成二进制
11010.0
规格化二进制数
1.10100*2^4
计算指数
4+127=131
符号位 指数部分 尾数部分
0 10000011 10100000000000000000000
以单精度(real*4)浮点格式存储该数
0100 0001 1101 0000 0000 0000 0000 0000
0x41D0 0000
[例4.2]:
0.75
十进制0.75转换成二进制
0.11
规格化二进制数
1.1*2^-1
计算指数
-1+127=126
符号位 指数部分 尾数部分
0 01111110 10000000000000000000000
以单精度(real*4)浮点格式存储该数
0011 1111 0100 0000 0000 0000 0000 0000
0x3F40 0000
[例4.3]:
-2.5
十进制-2.5转换成二进制
-10.1
规格化二进制数
-1.01*2^1
计算指数
1+127=128
符号位 指数部分 尾数部分
1 10000000 01000000000000000000000
以单精度(real*4)浮点格式存储该数
1100 0000 0010 0000 0000 0000 0000 0000
0xC020 0000
拓展阅读:http://blog.csdn.net/fireseed/article/details/2180
【转载】IEEE754 学习总结的更多相关文章
- 【转载】学习资料存档:jQuery的deferred对象详解
我在以前的文章里提到promise和deferred,这两个东西其实是对回调函数的一种写法,javascript的难点之一是回调函数,但是我们要写出优秀的javascript代码又不得不灵活运用回调函 ...
- 转载:学习Entity Framework 中的Code First
看完觉得不错,适合作为学习资料,就转载过来了 原文链接:http://www.cnblogs.com/Wayou/archive/2012/09/20/EF_CodeFirst.html 这是上周就写 ...
- 转载-python学习笔记之输入输出功能读取和写入数据
读取.写入和 Python 在 “探索 Python” 系列以前的文章中,学习了基本的 Python 数据类型和一些容器数据类型,例如tuple.string 和 list.其他文章讨论了 Pytho ...
- 转载-Python学习笔记之文件读写
Python 文件读写 Python内置了读写文件的函数,用法和C是兼容的.本节介绍内容大致有:文件的打开/关闭.文件对象.文件的读写等. 本章节仅示例介绍 TXT 类型文档的读写,也就是最基础的文件 ...
- 转载——JavaScript学习笔记:取数组中最大值和最小值
转载自:http://www.w3cplus.com/javascript/calculate-the-max-min-value-from-an-array.html. 取数组中最大值 可以先把思路 ...
- 转载OPENCV学习随笔
转载自 亦轩Dhc http://www.cnblogs.com/daihengchen/p/5492729.html 学习笔记:使用opencv做双目测距(相机标定+立体匹配+测距). 最近在做 ...
- [转载]DotNetty 学习
[转载]http://www.cnblogs.com/littlegod/p/7699482.html DotNetty的学习是带着如下这些问题展开: 1. Socket基础框架方案: 通信模式:异步 ...
- [转载]AxureRP学习成长之路
[编者按]本文作者@朱军华Ronzhu , 本文借用官网的描述定义,介绍了在学习AxureRP过程当中所要经历的各个阶段,也结合了作者自身学习AxureRP使用的经验,讲一下在各个阶段中的一些学习方法 ...
- [转载]JavaEE学习篇之——网络传输数据中的密码学知识以及Tomcat中配置数字证书EE
原文链接:http://blog.csdn.net/jiangwei0910410003/article/details/21716557 今天是学习JavaWeb的第二天,我们来了解什么呢?就了解一 ...
随机推荐
- cocos2d-x游戏引擎核心之十二——3.x新特性
v3.0 亮点 使用 C++(C++11) 的特性取代了 Objective-C 的特性 优化了 Labels 优化了渲染器(比 v2.2 更快) 新的事件分发机制 物理引擎集成 新的 UI 对象 J ...
- 进程防结束之PS_CROSS_THREAD_FLAGS_SYSTEM
有人投到黑防去了,不过黑防不厚道,竟然没给完整的代码,自己整理一份备用吧,驱网.DebugMan.邪八的那群人直接飘过吧. 这种方法的关键在于给线程的ETHREAD.CrossThreadFlags设 ...
- web基础----->servlet中得到请求的数据
对tomcat的源码做一些分析,今天我们就开始servlet中的请求分析. form表单中的默认类型 一.在index.jsp中get请求: <form action="Paramet ...
- 经验之道:最有效的iOS内存泄漏检测
版权声明:本文由胡涛原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/125 来源:腾云阁 https://www.qclou ...
- ubuntu 14.04 返回到经典桌面方法
1.打开终端,运行下面命令:sudo apt-get install gnome-session-fallback 2.重启机器,选择gnome,然后登录
- Minix2.0操作系统kernel文件分析
详细分析 MINIX消息机制的核心: mpx386.s start.c proc.c 保护模式分析: src/kernel/exception.c src/kernel/protect.c src/ ...
- ELK平台介绍
在搜索ELK资料的时候,发现这篇文章比较好,于是摘抄一小段: 以下内容来自:http://baidu.blog.51cto.com/71938/1676798 日志主要包括系统日志.应用程序日志和安全 ...
- Windows Phone 7 程序等待页面的处理
程序启动通常会有一个等待的过程,在这个过程中可以通过使用Popup控件配合BackgroundWorker类启动后台线程来实现. 控件的代码 PopupSplash.xaml <UserCont ...
- jquery插件方式实现table查询功能
1.写插件部分,如下: ;(function($){ $.fn.plugin = function(options){ var defaults = { //各种属性,各种参数 } var optio ...
- pta 习题集5-17 家谱处理
人类学研究对于家族很感兴趣,于是研究人员搜集了一些家族的家谱进行研究.实验中,使用计算机处理家谱.为了实现这个目的,研究人员将家谱转换为文本文件.下面为家谱文本文件的实例: John Robert F ...