题目链接:

https://cn.vjudge.net/problem/SGU-462

题目大意:

有N条电线需要接入电网,第i条电线计划连接ai和bi两个地点,电线有两个属性:ri(电线稳定度)和ci(电线价值)。电线需要依次接入,如果形成了环,那么环上稳定度最低的电线就会被烧毁。你需要确定一个接入电线的顺序,使得电线总价值最大。

解题思路:

由于形成环,环上的最低稳定度的电线会被烧毁,所以最终的结果一定没有环,也就是一棵以r为关键字的最大生成树(因为最小的r在环上会被烧断,完好无损的就是最大的r),要使得价值最大,那么相同的r就按照价值大的排在前面,排好序求出最大生成树那就是最大价值。

至于连接顺序,只要保持r从小到大或者r从大到小都是可以的。

注意:由于需要将每条边的两个节点进行编号,所以用并查集的时候初始化范围从0到2*n而不是n。因为每条边有两个点。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + ;
int n, m;
struct node//存储操作
{
int u, v, id;
ll c, r;
}a[maxn];
bool cmp1(const node& a, const node& b)
{
if(a.r == b.r)return a.c > b.c;
return a.r > b.r;//最大生成树
}
bool cmp2(const node& a, const node& b)
{
if(a.r == b.r)return a.c < b.c;
return a.r < b.r;
}
int fa[maxn];
int Find(int x)
{
return x == fa[x] ? x : fa[x] = Find(fa[x]);
}
map<int, int>ID;
int cnt;
int getID(int x)
{
if(ID[x])return ID[x];
return ID[x] = ++cnt;
}
int main()
{
while(scanf("%d", &n) != EOF)
{
ID.clear();
cnt = ;//计数
for(int i = ; i <= n; i++)
{
scanf("%d%d%lld%lld", &a[i].u, &a[i].v, &a[i].r, &a[i].c);
a[i].u = getID(a[i].u);
a[i].v = getID(a[i].v);
a[i].id = i;
}
for(int i = ; i <= cnt; i++)
fa[i] = i;
sort(a + , a + + n, cmp1);
ll ans = ;
for(int i = ; i <= n; i++)
{
if(Find(a[i].u) != Find(a[i].v))
{
ans += a[i].c;
fa[Find(a[i].u)] = Find(a[i].v);
}
}
sort(a + , a + + n, cmp2);
printf("%lld\n%d", ans, a[].id);
for(int i = ; i <= n; i++)
printf(" %d", a[i].id);
puts("");
}
return ;
}

SGU---462 Electrician 最大生成树的更多相关文章

  1. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  2. NOIP 2013 货车运输 最大生成树加DFS巧妙AC

    #include<set> #include<map> #include<cmath> #include<queue> #include<stac ...

  3. luogu p2330[SCOI05] 繁忙的都市——瓶颈生成树

    P2330 05四川 繁忙的都市 题目描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道 ...

  4. jstree动态生成树

    前篇文章简单介绍了静态生成树,这篇文章将通过后台把数据通过json形式传到前台,进行动态生成树. 本篇的程序所用框架为Spring MVC,可以很方便的通过controller层传json到前台. 前 ...

  5. jstree静态生成树并为树添加触发事件

    本章将介绍如何简单的使用jstree生成树(生成树的数据是静态的),并为树添加点击事件. 1. 建一个jsp页面,引入jquery.js(在其他js前引用),引入jstree所需的js,css文件(可 ...

  6. 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1766  Solved: 946[Submit][Status ...

  7. 【HDU 4305】Lightning(生成树计数)

    Problem Description There are N robots standing on the ground (Don't know why. Don't know how). Sudd ...

  8. PHP无限极分类生成树方法,无限分级

    你还在用浪费时间又浪费内存的递归遍历无限极分类吗,看了该篇文章,我觉得你应该换换了.这是我在OSChina上看到的一段非常精简的PHP无限极分类生成树方法,巧在引用,整理分享了. function g ...

  9. SGU 495. Kids and Prizes

    水概率....SGU里难得的水题.... 495. Kids and Prizes Time limit per test: 0.5 second(s)Memory limit: 262144 kil ...

随机推荐

  1. PHP的一些语句 if...else...elseif - Switch - while - for

    条件语句用于基于不同条件执行不同的动作 PHP 条件语句 在您编写代码时,经常会希望为不同的决定执行不同的动作.您可以在代码中使用条件语句来实现这一 点. 在 PHP 中,我们可以使用以下条件语句: ...

  2. [转]emailjs-smtp-client

    本文转自:https://github.com/emailjs/emailjs-smtp-client/blob/master/README.md SMTP Client SMTP Client al ...

  3. redis 绑定任意ip

    vi /etc/redis.conf 修改bind语句为 bind 0.0.0.0

  4. Unity 动态加载资源的方式。

    方式 特点  用法  Resource.load  安装包会比较大  在Asset文件夹下建一个Resources命名的文件夹,在打包安装包时会把 Resources文件夹下的所有文件都打包进去,不管 ...

  5. Java - 方法的参数声明

    给方法的参数加上限制是很常见的,比如参数代表索引时不能为负数.对于某个关键对象引用不能为null,否则会进行一些处理,比如抛出相应的异常信息. 对于这些参数限制,方法的提供者必须在文档中注明,并且在方 ...

  6. [javaSE] 数据结构(二叉查找树-插入节点)

    二叉查找树(Binary Search Tree),又被称为二叉搜索树,它是特殊的二叉树,左子树的节点值小于右子树的节点值. 定义二叉查找树 定义二叉树BSTree,它保护了二叉树的根节点BSTNod ...

  7. BigDecimal 精准加减乘除

    解决了double和float精确度的问题 Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算.双精度浮点型变量double可以处理16位有效 ...

  8. OutOfMemoryError(内存溢出)解决办法

    第一种OutOfMemoryError: PermGen space 发生这种问题的原意是程序中使用了大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generati ...

  9. Java CountDownLatch解析(上)

    写在前面的话 最近一直在边工作边学习分布式的东西,看到了构建Java中间件的基础知识,里面有提到Java多线程并发的工具类,例如ReentrantLock.CyclicBarrier.CountDow ...

  10. HDU 1875(最小生成树)

    因为是全连接图,所以也可以用最小生成树 这道题给边加了一个限制条件,(10<=x<=1000),所以可能不能全连通,需要判断 #include <cstdio> #includ ...