HDU-1423 最长公共上升子序列(LCIS)
问题描述:###
给定两个字符串x, y, 求它们公共子序列s, 满足si < sj ( 0 <= i < j < |s|).要求S的长度是所有条件序列中长度最长的.
做过最长公共子序列应该更容易明白了。
定义状态d[i][j]表示以a数组的前i个元素,b数组的前j个元素并且以b[j]为结尾的LCIS的长度。
首先:a[i] != b[j]时, d[i][j] = d[i-1][j]; 因为 d[i][j] 是以 b[j] 为结尾的LCIS,如果 d[i][j] > 0 那么就说明 a[1] .... a[i] 中必然有一个元素 a[k] 等于 b[j]。因为 a[k] != a[i],那么 a[i] 对 d[i][j] 没有贡献,于是我们不考虑它照样能得出 d[i][j] 的最优值。所以在 a[i] != b[j] 的情况下必然有 d[i][j] = d[i-1][j]。这一点参考LCS的处理方法。
当a[i]==b[j]时, 首先,这个等于起码保证了长度为1的LCIS。然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的d数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。第二维需要枚举 b[1] ... b[j-1]了,因为你不知道这里面哪个最长且哪个小于 b[j]。
状态转移方程:###
a[i] != b[j]: d[i][j]=d[i-1][j] ;
a[i] == b[j]: d[i][j]=max(d[i-1][k]) + 1 ; (1<= k <= j-1)
不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。
但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(d[i-1][k])的值我们可以在之前访问 d[i][k] 的时候通过维护更新一个max变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了 d[1][n2] 再去算 d[2][1]。 如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个max变量为0,然后开始内层循环。当a[i]>b[j]的时候令max = d[i-1][j]。如果循环到了a[i] == b[j]的时候,则令 d[i][j] = max+1。 最后答案是 d[n1][1] ... d[n1][n2]的最大值。
举个例子
a={1, 4, 2, 5, -12} b ={5, -12, 1, 2, 4, 5}
if(a[i] == b[j])
d[i][j] = mx + 1;
else if(a[i] > b[j] && mx < d[i-1][j])
mx = d[i-1][j];
//只有当a[i] > b[j]时,才更新mx, 保证了所求序列是上升的。
仔细看表格会发现: 若d[i][j] > 0 的话,那么在数组a前i个元素中一定存在a[k]( 1 <= k <= i)等于b[j]. 否则说明前i个a元素中没有与b[j]相同的元素。
//O(n^3) DP 实现
#include<bits/stdc++.h>
using namespace std;
int m1,m2,a[505],b[505],maxx,top=1,flag;
int f[505][505];
int main()
{
cin>>m1;
for(int i=1;i<=m1;i++)
cin>>a[i];
cin>>m2;
for(int j=1;j<=m2;j++)
cin>>b[j];
for(int i=1;i<=m1;i++)
{
for(int j=1;j<=m2;j++)
{
f[i][j]=f[i-1][j];
if(a[i]==b[j])
{
int Max=0;
for(int k=1;k<=j-1;k++)
if(b[j]>b[k])
Max=max(Max,f[i-1][k]);
f[i][j]=Max+1;
}
}
}
cout<<f[m1][m2]<<endl;
maxx=f[m1][m2];
for(int i=1;i<=m1;i++)
{
for(int j=1;j<=m2;j++)
{
if(f[i][j]==top)
{
cout<<a[i]<<" ";
flag=1;
break;
}
}
if(flag==1)
{
top++; flag=0;
}
if(top>maxx)
break;
}
return 0;
}
//O(n^2) DP 实现
#include<iostream>
#include<cstdio>
#include<string.h>
#include<cstring>
#include<math.h>
using namespace std;
int n1, n2, t, k;
int a[505], b[505], d[505][505];
int dp()
{
int mx;
for(int i = 1; i <= n1; i++)
{
mx = 0;
for(int j = 1; j <= n2; j++)
{
d[i][j] = d[i-1][j];
if(a[i] > b[j] && mx < d[i-1][j]) mx = d[i-1][j];
else if(a[i] == b[j])
d[i][j] = mx + 1;
}
}
mx = 0;
for(int i = 1; i <= n2; i++)
{
if(d[n1][i] > mx)
mx = d[n1][i];
}
return mx;
}
int main()
{
cin >> t;
while(t--)
{
scanf("%d", &n1);
for(int i = 1; i <= n1; i++) scanf("%d", &a[i]);
scanf("%d", &n2);
for(int i = 1; i <= n2; i++) scanf("%d", &b[i]);
memset(d, 0, sizeof(d));
int ans = dp();
printf("%d\n", ans);
if(t) printf("\n");
}
return 0;
}
HDU-1423 最长公共上升子序列(LCIS)的更多相关文章
- hdu 1423 最长公共递增子序列 LCIS
最长公共上升子序列(LCIS)的O(n^2)算法 预备知识:动态规划的基本思想,LCS,LIS. 问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列). 首先我们可以看到,这个问题具有相 ...
- hdu 1423 最长公共递增子序列
这题一开始把我给坑了,我还没知道LCIS的算法,然后就慢慢搞吧,幸运的是还真写出来了,只不过麻烦了一点. 我是将该题转换为多条线段相交,然后找出最多多少条不相交,并且其数值死递增的. 代码如下: #i ...
- 最长公共上升子序列(LCIS)
最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的.刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网 ...
- [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]
Virus We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...
- HDU 4512 最长公共上升子序列
各种序列复习: (1)最长上升子序列. 1.这个问题用动态规划就很好解决了,设dp[i]是以第i个数字结尾的上升子序列的最长长度.那么方程可以是dp[i]=max(dp[j]+1).(j<i). ...
- 动态规划——最长公共上升子序列LCIS
问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1 ...
- HDU 1423 最长公共字串+上升子序列
http://acm.hdu.edu.cn/showproblem.php?pid=1423 在前一道题的基础上多了一次筛选 要选出一个最长的递增数列 lower_bound()函数很好用,二分搜索找 ...
- HDU1423 最长公共上升子序列LCIS
Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the lengt ...
- hdu 1423 最长上升递增子序列
#include <iostream> #include <cstdio> #include <cstring> using namespace std; ; in ...
- LCIS最长公共上升子序列
最长公共上升子序列LCIS,如字面意思,就是在对于两个数列A和B的最长的单调递增的公共子序列. 这道题目是LCS和LIS的综合. 在LIS中,我们通过两重循环枚举当序列以当前位置为结尾时,A序列中当前 ...
随机推荐
- mac 配置jdk,maven环境变量
Java和maven环境变量配置: 1.打开终端:输入命令:vi ~/.bash_profile 2.再输入 i 进入编辑模式 输入以下: export JAVA_HOME=/Library/Java ...
- iTOP-4418开发板支持Android4.4/5.1.1系统、Linux3.4.39、QT2.2/4.7/5.7、Ubuntu12.04
核心板参数 尺寸:50mm*60mm 高度:核心板连接器组合高度1.5mm PCB层数:6层PCB沉金设计 4418 CPU:ARM Cortex-A9 四核 S5P4418处理器 1.4GHz 68 ...
- vue.js基础
1,感谢菜鸟教程 2,第一个实例 <html> <head> <meta charset="utf-8"> <title>Vue 测 ...
- mac 终端里进入mysql和退出
先在偏好设置里启动mysql服务 获取超级权限 在终端输入代码 sudo su 输入完后获取超级权限 终端显示 sh-3.2# 输入本机密码(Apple ID密码) 接着通过绝对路径登陆 代码 /us ...
- L2-006 树的遍历 (25 分)
链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805069361299456 题目: 给定一棵二叉树的后序遍历和中序 ...
- windows 安装docker报错:Error checking TLS connection: ssh command error: command : ip addr show
今天安装docker部署的时候总是再报这个错误. 报错的原因是初始化的时候出错了. 在docker 安装目录下有一个文件,如下图所示 将它复制到你电脑用户名目录下生成.docker 的文件夹中,如下图 ...
- TCP-IP详解笔记8
TCP-IP详解笔记8 TCP超时与重传 下层网络层(IP)可能出现丢失, 重复或丢失包的情况, TCP协议提供了可靠的数据传输服务. TCP启动重传操作, 重传尚未确定的数据. 基于时间重传. 基于 ...
- 数据库入门-pymysql模块的使用
一.pymysql模块安装 由于本人的Python版本为python3.7,所以用pymysql来连接数据库(mysqldb不支持python3.x) 方法一: #在cmd输入 pip3 instal ...
- 移动端web app开发学习笔记
移动web和pc端web以及web app 移动web开发跟web前端开发差别很小,使用的技术都是html+css+js.手机网页可以理解成pc网页的缩小版加一些触摸特性.在浏览器中进行的网页开发,最 ...
- fastjson与net.sf.json区别
在现在的开发当中,绝大多数引用阿里巴巴的fastjson.当然net.sf.json同样可以使用. 一.引入net.sf.json包 首先用net.sf.json包,当然你要导入很多包来支持commo ...