问题描述:###

给定两个字符串x, y, 求它们公共子序列s, 满足si < sj ( 0 <= i < j < |s|).要求S的长度是所有条件序列中长度最长的.

做过最长公共子序列应该更容易明白了。

定义状态d[i][j]表示以a数组的前i个元素,b数组的前j个元素并且以b[j]为结尾的LCIS的长度。

首先:a[i] != b[j]时, d[i][j] = d[i-1][j]; 因为 d[i][j] 是以 b[j] 为结尾的LCIS,如果 d[i][j] > 0 那么就说明 a[1] .... a[i] 中必然有一个元素 a[k] 等于 b[j]。因为 a[k] != a[i],那么 a[i] 对 d[i][j] 没有贡献,于是我们不考虑它照样能得出 d[i][j] 的最优值。所以在 a[i] != b[j] 的情况下必然有 d[i][j] = d[i-1][j]。这一点参考LCS的处理方法。

当a[i]==b[j]时, 首先,这个等于起码保证了长度为1的LCIS。然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的d数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。第二维需要枚举 b[1] ... b[j-1]了,因为你不知道这里面哪个最长且哪个小于 b[j]。

状态转移方程:###

a[i] != b[j]: d[i][j]=d[i-1][j] ;

a[i] == b[j]: d[i][j]=max(d[i-1][k]) + 1 ; (1<= k <= j-1)

不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。

但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(d[i-1][k])的值我们可以在之前访问 d[i][k] 的时候通过维护更新一个max变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了 d[1][n2] 再去算 d[2][1]。 如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个max变量为0,然后开始内层循环。当a[i]>b[j]的时候令max = d[i-1][j]。如果循环到了a[i] == b[j]的时候,则令 d[i][j] = max+1。 最后答案是 d[n1][1] ... d[n1][n2]的最大值。

举个例子

a={1, 4, 2, 5, -12} b ={5, -12, 1, 2, 4, 5}

 if(a[i] == b[j])
d[i][j] = mx + 1;
else if(a[i] > b[j] && mx < d[i-1][j])
mx = d[i-1][j];
//只有当a[i] > b[j]时,才更新mx, 保证了所求序列是上升的。

仔细看表格会发现: 若d[i][j] > 0 的话,那么在数组a前i个元素中一定存在a[k]( 1 <= k <= i)等于b[j]. 否则说明前i个a元素中没有与b[j]相同的元素。

//O(n^3) DP 实现

#include<bits/stdc++.h>
using namespace std;
int m1,m2,a[505],b[505],maxx,top=1,flag;
int f[505][505]; int main()
{
cin>>m1;
for(int i=1;i<=m1;i++)
cin>>a[i];
cin>>m2;
for(int j=1;j<=m2;j++)
cin>>b[j]; for(int i=1;i<=m1;i++)
{
for(int j=1;j<=m2;j++)
{
f[i][j]=f[i-1][j];
if(a[i]==b[j])
{
int Max=0;
for(int k=1;k<=j-1;k++)
if(b[j]>b[k])
Max=max(Max,f[i-1][k]);
f[i][j]=Max+1;
}
}
}
cout<<f[m1][m2]<<endl;
maxx=f[m1][m2];
for(int i=1;i<=m1;i++)
{
for(int j=1;j<=m2;j++)
{
if(f[i][j]==top)
{
cout<<a[i]<<" ";
flag=1;
break;
}
}
if(flag==1)
{
top++; flag=0;
}
if(top>maxx)
break;
}
return 0;
}
//O(n^2) DP 实现

#include<iostream>
#include<cstdio>
#include<string.h>
#include<cstring>
#include<math.h>
using namespace std; int n1, n2, t, k;
int a[505], b[505], d[505][505];
int dp()
{
int mx;
for(int i = 1; i <= n1; i++)
{
mx = 0;
for(int j = 1; j <= n2; j++)
{
d[i][j] = d[i-1][j];
if(a[i] > b[j] && mx < d[i-1][j]) mx = d[i-1][j];
else if(a[i] == b[j])
d[i][j] = mx + 1;
}
}
mx = 0;
for(int i = 1; i <= n2; i++)
{
if(d[n1][i] > mx)
mx = d[n1][i];
}
return mx;
}
int main()
{
cin >> t;
while(t--)
{
scanf("%d", &n1);
for(int i = 1; i <= n1; i++) scanf("%d", &a[i]);
scanf("%d", &n2);
for(int i = 1; i <= n2; i++) scanf("%d", &b[i]);
memset(d, 0, sizeof(d));
int ans = dp();
printf("%d\n", ans);
if(t) printf("\n");
}
return 0;
}

HDU-1423 最长公共上升子序列(LCIS)的更多相关文章

  1. hdu 1423 最长公共递增子序列 LCIS

    最长公共上升子序列(LCIS)的O(n^2)算法 预备知识:动态规划的基本思想,LCS,LIS. 问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列). 首先我们可以看到,这个问题具有相 ...

  2. hdu 1423 最长公共递增子序列

    这题一开始把我给坑了,我还没知道LCIS的算法,然后就慢慢搞吧,幸运的是还真写出来了,只不过麻烦了一点. 我是将该题转换为多条线段相交,然后找出最多多少条不相交,并且其数值死递增的. 代码如下: #i ...

  3. 最长公共上升子序列(LCIS)

    最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的.刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网 ...

  4. [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]

      Virus  We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...

  5. HDU 4512 最长公共上升子序列

    各种序列复习: (1)最长上升子序列. 1.这个问题用动态规划就很好解决了,设dp[i]是以第i个数字结尾的上升子序列的最长长度.那么方程可以是dp[i]=max(dp[j]+1).(j<i). ...

  6. 动态规划——最长公共上升子序列LCIS

    问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1 ...

  7. HDU 1423 最长公共字串+上升子序列

    http://acm.hdu.edu.cn/showproblem.php?pid=1423 在前一道题的基础上多了一次筛选 要选出一个最长的递增数列 lower_bound()函数很好用,二分搜索找 ...

  8. HDU1423 最长公共上升子序列LCIS

    Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the lengt ...

  9. hdu 1423 最长上升递增子序列

    #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; in ...

  10. LCIS最长公共上升子序列

    最长公共上升子序列LCIS,如字面意思,就是在对于两个数列A和B的最长的单调递增的公共子序列. 这道题目是LCS和LIS的综合. 在LIS中,我们通过两重循环枚举当序列以当前位置为结尾时,A序列中当前 ...

随机推荐

  1. mysql 重置密码

    mysql 重置密码,跳过登录修改密码: # centos 上mysql 已经改名了,启动服务的时候注意是mariadb 了!!!!! # systemctl stop mariadb # syste ...

  2. BFS 模拟队列(水题)

    BFS 这道题 觉得比较适合BFS新手入门写,也许大家都以为最入门 的BFS题是在二维图上搜索,但是这道题是线性搜索,更加简单 POJ 3278 Catch That Cow Time Limit:  ...

  3. 服务发现 consul cluster 的搭建【转】

    consul cluster setup 介绍和指南: consul用于服务发现.当底层服务发生变化时,能及时更新正确的mysql服务IP. 并提供给业务查询.但需要自行编写脚本,监测数据库状态和切断 ...

  4. go语言熟知的开源项目

    go语言在国内是比较火的,并且好多公司都用go语言进行重构之前的系统,今天来看下基本大家都知道的go语言的开源项目 1.Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用 ...

  5. struts 学习03

    jdk下载: 使用注解: @ParenPackage(value="struts-default") @Namespace(value="/) @Action(value ...

  6. python基础--absl.flags

    之前在tensorflow的mnist例程中看到了使用 absl.flags的方法来载入和解析参数的,出于学习的目的,就自己试验了一下, 代码如下: # *_*coding:utf-8 *_* # a ...

  7. h1-h3使用

    一个页面也就只允许出现一个h1标签.内容页文章的标题,是seo中使用最多的地方,基本的文章页面标题都是使用h1标签.一.<h1>用来修饰网页的主标题,一般是网页的标题 ,文章标题,< ...

  8. tp5.1入口文件隐藏

    修改.htaccess文件 <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews RewriteEngine On Re ...

  9. 关于form-checkbox 必填项无效的错误

    校验规则要写在一个form里 检查data,给个默认值. 否则刚进去错误提示不显示. 其次,要加 type 类型,注意大小写 触发类型为 change .

  10. ad9361自测试校准

    #include "config.h" #include "CONFIG_FPGA_ALL.h" #include "xparameters.h&qu ...