spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能。当然主要对类SQL的支持。

在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选、合并,重新入库。

首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数。

而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中。

不得不赞叹dataframe的强大。

具体示例:为了得到样本均衡的训练集,需要对两个数据集中各取相同的训练样本数目来组成,因此用到了这个功能。

scala> val fes = hiveContext.sql(sqlss)
fes: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int]

scala> val fcount = fes.count()
fcount: Long = 4371029

scala> val zcfea = hiveContext.sql(sqls2)
zcfea: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int]

scala> val zcount = zcfea.count()
zcount: Long = 14208117

scala> val f01 = fes.limit(25000)
f01: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int]

scala> val f02 = zcfea.limit(25000)
f02: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int]

scala> val ff=f01.unionAll(f02)
ff: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int]

scala> ff.registerTempTable("ftable01")

scala> hiveContext.sql("create table shtrainfeature as select * from ftable01")
res1: org.apache.spark.sql.DataFrame = []

最后附上dataframe的一些操作及用法:

DataFrame 的函数
Action 操作
1、 collect() ,返回值是一个数组,返回dataframe集合所有的行
2、 collectAsList() 返回值是一个java类型的数组,返回dataframe集合所有的行
3、 count() 返回一个number类型的,返回dataframe集合的行数
4、 describe(cols: String*) 返回一个通过数学计算的类表值(count, mean, stddev, min, and max),这个可以传多个参数,中间用逗号分隔,如果有字段为空,那么不参与运算,只这对数值类型的字段。例如df.describe("age", "height").show()
5、 first() 返回第一行 ,类型是row类型
6、 head() 返回第一行 ,类型是row类型
7、 head(n:Int)返回n行  ,类型是row 类型
8、 show()返回dataframe集合的值 默认是20行,返回类型是unit
9、 show(n:Int)返回n行,,返回值类型是unit
10、 table(n:Int) 返回n行  ,类型是row 类型

dataframe的基本操作
1、 cache()同步数据的内存
2、 columns 返回一个string类型的数组,返回值是所有列的名字
3、 dtypes返回一个string类型的二维数组,返回值是所有列的名字以及类型
4、 explan()打印执行计划  物理的
5、 explain(n:Boolean) 输入值为 false 或者true ,返回值是unit  默认是false ,如果输入true 将会打印 逻辑的和物理的
6、 isLocal 返回值是Boolean类型,如果允许模式是local返回true 否则返回false
7、 persist(newlevel:StorageLevel) 返回一个dataframe.this.type 输入存储模型类型
8、 printSchema() 打印出字段名称和类型 按照树状结构来打印
9、 registerTempTable(tablename:String) 返回Unit ,将df的对象只放在一张表里面,这个表随着对象的删除而删除了
10、 schema 返回structType 类型,将字段名称和类型按照结构体类型返回
11、 toDF()返回一个新的dataframe类型的
12、 toDF(colnames:String*)将参数中的几个字段返回一个新的dataframe类型的,
13、 unpersist() 返回dataframe.this.type 类型,去除模式中的数据
14、 unpersist(blocking:Boolean)返回dataframe.this.type类型 true 和unpersist是一样的作用false 是去除RDD

集成查询:
1、 agg(expers:column*) 返回dataframe类型 ,同数学计算求值
df.agg(max("age"), avg("salary"))
df.groupBy().agg(max("age"), avg("salary"))
2、 agg(exprs: Map[String, String])  返回dataframe类型 ,同数学计算求值 map类型的
df.agg(Map("age" -> "max", "salary" -> "avg"))
df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
3、 agg(aggExpr: (String, String), aggExprs: (String, String)*)  返回dataframe类型 ,同数学计算求值
df.agg(Map("age" -> "max", "salary" -> "avg"))
df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
4、 apply(colName: String) 返回column类型,捕获输入进去列的对象
5、 as(alias: String) 返回一个新的dataframe类型,就是原来的一个别名
6、 col(colName: String)  返回column类型,捕获输入进去列的对象
7、 cube(col1: String, cols: String*) 返回一个GroupedData类型,根据某些字段来汇总
8、 distinct 去重 返回一个dataframe类型
9、 drop(col: Column) 删除某列 返回dataframe类型
10、 dropDuplicates(colNames: Array[String]) 删除相同的列 返回一个dataframe
11、 except(other: DataFrame) 返回一个dataframe,返回在当前集合存在的在其他集合不存在的
12、 explode[A, B](inputColumn: String, outputColumn: String)(f: (A) ⇒ TraversableOnce[B])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[B]) 返回值是dataframe类型,这个 将一个字段进行更多行的拆分
df.explode("name","names") {name :String=> name.split(" ")}.show();
将name字段根据空格来拆分,拆分的字段放在names里面
13、 filter(conditionExpr: String): 刷选部分数据,返回dataframe类型 df.filter("age>10").show();  df.filter(df("age")>10).show();   df.where(df("age")>10).show(); 都可以
14、 groupBy(col1: String, cols: String*) 根据某写字段来汇总返回groupedate类型   df.groupBy("age").agg(Map("age" ->"count")).show();df.groupBy("age").avg().show();都可以
15、 intersect(other: DataFrame) 返回一个dataframe,在2个dataframe都存在的元素
16、 join(right: DataFrame, joinExprs: Column, joinType: String)
一个是关联的dataframe,第二个关联的条件,第三个关联的类型:inner, outer, left_outer, right_outer, leftsemi
df.join(ds,df("name")===ds("name") and  df("age")===ds("age"),"outer").show();
17、 limit(n: Int) 返回dataframe类型  去n 条数据出来
18、 na: DataFrameNaFunctions ,可以调用dataframenafunctions的功能区做过滤 df.na.drop().show(); 删除为空的行
19、 orderBy(sortExprs: Column*) 做alise排序
20、 select(cols:string*) dataframe 做字段的刷选 df.select($"colA", $"colB" + 1)
21、 selectExpr(exprs: String*) 做字段的刷选 df.selectExpr("name","name as names","upper(name)","age+1").show();
22、 sort(sortExprs: Column*) 排序 df.sort(df("age").desc).show(); 默认是asc
23、 unionAll(other:Dataframe) 合并 df.unionAll(ds).show();
24、 withColumnRenamed(existingName: String, newName: String) 修改列表 df.withColumnRenamed("name","names").show();
25、 withColumn(colName: String, col: Column) 增加一列 df.withColumn("aa",df("name")).show();

--------------------- 本文来自 sparkexpert 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/sparkexpert/article/details/51042970?utm_source=copy

【spark】dataframe常见操作的更多相关文章

  1. spark DataFrame 常见操作

    spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持. 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库. 首先加载数据集 ...

  2. spark RDD 常见操作

    fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...

  3. Spark处理日志文件常见操作

    spark有自己的集群计算技术,扩展了hadoop mr模型用于高效计算,包括交互式查询和 流计算.主要的特性就是内存的集群计算提升计算速度.在实际运用过程中也当然少不了对一些数据集的操作.下面将通过 ...

  4. spark dataframe操作集锦(提取前几行,合并,入库等)

    https://blog.csdn.net/sparkexpert/article/details/51042970 spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当 ...

  5. pyspark dataframe 常用操作

    spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持.   在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库.   首先加 ...

  6. Spark DataFrame中的join使用说明

    spark sql 中join的类型 Spark DataFrame中join与SQL很像,都有inner join, left join, right join, full join; 类型 说明 ...

  7. Pandas 常见操作详解

    Pandas 常见操作详解 很多人有误解,总以为Pandas跟熊猫有点关系,跟gui叔创建Python一样觉得Pandas是某某奇葩程序员喜欢熊猫就以此命名,简单介绍一下,Pandas的命名来自于面板 ...

  8. spark dataframe unionall

    今天本来想写一个spark dataframe unionall的demo,由于粗心报下面错误: Exception in thread "main" org.apache.spa ...

  9. 动态单链表的传统存储方式和10种常见操作-C语言实现

    顺序线性表的优点:方便存取(随机的),特点是物理位置和逻辑为主都是连续的(相邻).但是也有不足,比如:前面的插入和删除算法,需要移动大量元素,浪费时间,那么链式线性表 (简称链表) 就能解决这个问题. ...

随机推荐

  1. js工具方法

    获取页面链接中的参数,以数组形式返回: function getParamsFromHref() { var parameters = window.location.search.substr(1) ...

  2. Mint-ui 脱坑日记

    Field表单组件 这个组件真是大坑特坑 带默认背景边框 找了半天才找到 原生属性 :attr="{ maxlength:10 }" 是可以设置原生属性的 注意此处限制的输入长度 ...

  3. C#中字符串转日期类型

    1,yyyyMMdd DateTime date = DateTime.ParseExact(", "yyyyMMdd", System.Globalization.Cu ...

  4. DAY23、面向对象特性

    一.复习1.类: 对象属性的查找顺序:先找自身再找类 类的名称空间:直接写在类中 对象的名称空间:写在__init__方法中,通过self.属性形成名称空间中的名字 类的方法:在类中用@classme ...

  5. List、Map、Set之间的联系与区别:

    一.数组和集合的区别: 1.数组的大小是固定的,并且同一个数组只能是相同的数据类型 2.集合的大小是不固定的,在不知道会有多少数据的情况下可使用集合. 二.集合的三种类型:list(列表).set(集 ...

  6. Oracle左连接、右连接、全外连接、(+)号作用

    在Oracle中,对于外连接, 也可以使用"(+) "来表示. 关于使用(+)的一些注意事项: 1.(+)操作符只能出现在where子句中,并且不能与outer join语法同时使 ...

  7. 熟悉常用的HBase操作

    1. 以下关系型数据库中的表和数据,要求将其转换为适合于HBase存储的表并插入数据: 学生表(Student)(不包括最后一列) 学号(S_No) 姓名(S_Name) 性别(S_Sex) 年龄(S ...

  8. api跨域

    1.找方法名称是get开头的2.找get请求类型的 自定义webapi的路由规则,控制到action 1.跨域设置:(服务端)webconfig文件中,system.webServer节点下添加 &l ...

  9. Flexbox(弹性盒模型)完全指南

    Flexbox(弹性盒模型)布局完全指南 Github:sueRimn 来源:A guide to Flexbox 这个指南讲诉了flexbox的所有内容,重点介绍了父元素(flex容器)和子元素(f ...

  10. 金蝶K3 wise 插件二次开发与配置

    金蝶K3 wise 插件二次开发与配置 开发环境:K/3 Wise 13.0.K/3 Bos开发平台.Visual Basic 6.0 目录 一.二次开发插件编程二.代码演示三.配置插件四.测试插件五 ...