keras笔记
函数式模型
函数式模型算是本文档比较原创的词汇了,所以这里要说一下
在Keras 0.x中,模型其实有两种,一种叫Sequential,称为序贯模型,也就是单输入单输出,一条路通到底,层与层之间只有相邻关系,跨层连接统统没有。这种模型编译速度快,操作上也比较简单。第二种模型称为Graph,即图模型,这个模型支持多输入多输出,层与层之间想怎么连怎么连,但是编译速度慢。可以看到,Sequential其实是Graph的一个特殊情况。
在Keras1和Keras2中,图模型被移除,而增加了了“functional model API”,这个东西,更加强调了Sequential是特殊情况这一点。一般的模型就称为Model,然后如果你要用简单的Sequential,OK,那还有一个快捷方式Sequential。
由于functional model API在使用时利用的是“函数式编程”的风格,我们这里将其译为函数式模型。总而言之,只要这个东西接收一个或一些张量作为输入,然后输出的也是一个或一些张量,那不管它是什么鬼,统统都称作“模型”。
batch
这个概念与Keras无关,老实讲不应该出现在这里的,但是因为它频繁出现,而且不了解这个技术的话看函数说明会很头痛,这里还是简单说一下。
深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。
第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。
另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。
为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。
基本上现在的梯度下降都是基于mini-batch的,所以Keras的模块中经常会出现batch_size,就是指这个。
顺便说一句,Keras中用的优化器SGD是stochastic gradient descent的缩写,但不代表是一个样本就更新一回,还是基于mini-batch的
keras笔记的更多相关文章
- Keras 笔记
1. 从 meta 模型恢复graph, 修改node 并保存 from __future__ import absolute_import from __future__ import div ...
- Python机器学习笔记:深入理解Keras中序贯模型和函数模型
先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: skl ...
- Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...
- Python机器学习笔记:深入学习Keras中Sequential模型及方法
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷 ...
- Python机器学习笔记:利用Keras进行分类预测
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow. 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进 ...
- Keras学习笔记——Hello Keras
最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...
- Keras 文档阅读笔记(不定期更新)
目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...
- 深度学习Keras框架笔记之AutoEncoder类
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction= ...
- 深度学习Keras框架笔记之TimeDistributedDense类
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init= ...
随机推荐
- codeforces 502 g The Tree
题解: 一道优秀的题目 有几种做法: 1.维护后缀和 刚开始我想的是维护前缀和 然后用$sum[x]-sum[y]>=dep[x]-dep[y]$来做 但是这样子树赋值为0这个操作就很难进行了 ...
- HDU4864:Task(贪心)
Problem DescriptionToday the company has m tasks to complete. The ith task need xi minutes to comple ...
- mybatis代码生成器——MyBatis Generator
1.maven依赖 a.加入依赖 <!-- mybatis生成工具 --> <dependency> <groupId>org.mybatis.generator& ...
- 微信小程序--家庭记账本开发--06
重要部分学习——记账簿 本次项目开发的目的主要是记账本的开发,最初自己想法简单,把家里的纸质记账簿变成手机上的记账簿.最终自己程序可以实现的功能可以记录每天的账目信息,并形成叠加效果,并按1.2.3… ...
- fiddler基本功能介绍
一.几种主流的抓包工具的对比: Wireshark:通用的抓包工具,抓取信息量庞大,详细.通常需要过滤才可容易得到有用信息.如果只抓http请求个人认为有点大材小用. Firebug.httpWatc ...
- 我的第二本译作《精通OpenStack》上架啦:书籍介绍和译者序
1. 书籍简介 英文书名:Mastering OpenStack Second Edition 作者:[德] 奥马尔-海德希尔(Omar Khedher)[印] 坚登-杜塔-乔杜里(Chanda Du ...
- 基于335X平台的UBOOT中交换芯片驱动移植
基于335X平台的UBOOT中交换芯片驱动移植 一.软硬件平台资料 1.开发板:创龙AM3359核心板,网口采用RMII形式. 2.UBOOT版本:U-Boot-2016.05,采用FDT和DM. 3 ...
- Hibernate根据实体类自动创建表
Hibernate支持自动建表,在开发阶段很方便,可以保证hbm与数据库表结构的自动同步. 如何使用呢?很简单,只要在hibernate.cfg.xml里加上如下代码 Xml代码<propert ...
- Linux Supervisor的安装与使用入门
在linux或者unix操作系统中,守护进程(Daemon)是一种运行在后台的特殊进程,它独立于控制终端并且周期性的执行某种任务或等待处理某些发生的事件.由于在linux中,每个系统与用户进行交流的界 ...
- Chrome_查看 webSocket 连接信息
1.以下代码实现一个webSocket连接,在文本输入框中输入内容,点击发送,通过服务器,返回相同的内容显示在下方. <!DOCTYPE html> <html lang=" ...