【BZOJ 3876】【AHOI 2014】支线剧情
http://www.lydsy.com/JudgeOnline/problem.php?id=3876
这道题每条支线的意思是每条边。。。
那么每条边的下界设为1就行了。
这样建出一个DAG,每条边下界为1,上界为正无穷,赋上费用。设1为S。所有点向T连边,下界为0,上界为正无穷,费用为0,表示可以随时退出。答案是这个图中的最小费用可行流。
最小费用可行流怎么求啊!
可行流什么的我只会求无源汇的。
想了好半天才明白该怎么做。。。
抛弃原来的建图,还是建出一个DAG,每条边下界为1,上界为正无穷,赋上费用。所有非1的点都向1连一条下界为0上界无穷费用为0的边,表示可以随时退出回到1点。
这样就是无源汇的啦!
我们要求这个新的图(附加网络)的最小费用可行流。
可行流我会求(套模板),设超级源S和超级汇T,每个点的入点下界和减去出点下界和,记为di。如果di小于0,从i连边向T,容量为-di;如果di大于0,从S连边向i,容量为di(都是模板的内容~)
从超级源到超级汇跑最大流,跑出来的就是可行流减去下界的流量。因为题意,所以肯定有解;又因为是DAG,所以可行流就是最小流。
如果要求最小费用可行流?不断spfa增广就可以实现最小费用了!
这样对于一条边的流量f=d+g,f为可行流的流量,d为下界,g为附加网络中实际的流量。
求出的最小费用是\(\sum_{i∈E}g_i*w_i\),并不是我们想要的f!
怎么办呢?因为所有的d一定会流满,所以直接加上\(\sum_{i∈E}d_i*w_i\)即可!(我好蠢啊,想了一晚上)
附赠样例图示:
6
2 2 1 3 2
2 4 3 5 4
2 5 5 6 6
0
0
0
附加网络是介个样子的:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 333;
const int M = N * N;
const int inf = 0x7fffffff;
struct node {
int nxt, to, c, w, from;
} E[M];
int cnt = 1, point[N];
void ins(int u, int v, int c, int w) {
E[++cnt] = (node) {point[u], v, c, w, u}; point[u] = cnt;
E[++cnt] = (node) {point[v], u, 0, -w, v}; point[v] = cnt;
}
bool inq[N];
int dist[N], pre[N], q[N];
bool spfa(int s, int t) {
for (int i = 1; i <= t; ++i) dist[i] = inf;
int head = 0, tail = 1, u, v, tt;
dist[s] = 0; inq[s] = true; q[1] = s;
while (head != tail) {
++head; if (head == N) head = 0;
u = q[head]; inq[u] = false;
for (int i = point[u]; i; i = E[i].nxt)
if (E[i].c && dist[v = E[i].to] > (tt = dist[u] + E[i].w)) {
dist[v] = tt; pre[v] = i;
if (!inq[v]) {
inq[v] = true;
++tail; if (tail == N) tail = 0;
q[tail] = v;
}
}
}
return dist[t] != inf;
}
int MCMF(int s, int t) {
int ret = 0;
while (spfa(s, t)) {
int f = inf, u;
for (u = t; u != s; u = E[pre[u]].from) f = min(f, E[pre[u]].c);
for (u = t; u != s; u = E[pre[u]].from) E[pre[u]].c -= f, E[pre[u] ^ 1].c += f;
ret += dist[t] * f;
}
return ret;
}
int n, du[N], S, T, ans = 0;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
int tot, bi, ti; scanf("%d", &tot);
du[i] -= tot;
while (tot--) {
scanf("%d%d", &bi, &ti);
ins(i, bi, inf, ti);
++du[bi]; ans += ti;
}
if (i != 1) ins(i, 1, inf, 0);
}
S = n + 1; T = S + 1;
for (int i = 1; i <= n; ++i) {
if (du[i] > 0) ins(S, i, du[i], 0);
if (du[i] < 0) ins(i, T, -du[i], 0);
}
printf("%d\n", MCMF(S, T) + ans);
return 0;
}
QAQ终于写完了,那么接下来我们

【BZOJ 3876】【AHOI 2014】支线剧情的更多相关文章
- BZOJ 3876 [AHOI/JSOI2014]支线剧情 (最小费用可行流)
题面:洛谷传送门 BZOJ传送门 题目大意:给你一张有向无环图,边有边权,让我们用任意条从1号点开始的路径覆盖这张图,需要保证覆盖完成后图内所有边都被覆盖至少一次,求覆盖路径总长度的最小值 最小费用可 ...
- bzoj 3876: [Ahoi2014&Jsoi2014]支线剧情【有上下界有源汇最小费用最大流】
每条边流量有下界有费用,很显然是有上下界有源汇最小费用最大流 连边(s,1,(0,inf),0),(i,t,(0,inf),0),表示从1出发inf次从每个点结束inf次 连边(i,j,(1,inf) ...
- BZOJ 3876 [Ahoi2014&Jsoi2014]支线剧情
题解: 带下界的费用流 对于x->y边权为z Addedge(x,t,1,0) Addedge(s,y,1,z) Addedge(x,y,inf,0) 然后对每个点Addedge(i,1,inf ...
- BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)
原图所有边下界设为1上界设为inf花费为时间,那么显然就是一个上下界最小费用流了.做法与可行流类似. 因为每次选的都是最短路增广,且显然不会有负权增广路,所以所求出来的可行流的费用就是最小的. #in ...
- BZOJ 3876 支线剧情 | 有下界费用流
BZOJ 3876 支线剧情 | 有下界费用流 题意 这题题面搞得我看了半天没看懂--是这样的,原题中的"剧情"指的是边,"剧情点"指的才是点. 题面翻译过来大 ...
- BZOJ 3876 支线剧情(有上下界的无源汇最小费用可行流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MB Submit: 1783 Solved: 1079 [Submit][St ...
- bzoj 3876 [Ahoi2014]支线剧情(有上下界的最小费用流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 484 Solved: 296[Submit][Status ...
- BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]
3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...
- BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流
3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...
- BZOJ 3876:支线剧情(有下界最小费用最大流)
3876: [Ahoi2014]支线剧情 Description [故事背景]宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧 ...
随机推荐
- js正则表达式校验非负浮点数:^[1-9]\d*\.\d*|0\.\d*[1-9]\d*|0?\.0+|0$
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- maven之一:maven安装和eclipse集成
maven作为一个项目构建工具,在开发的过程中很受欢迎,可以帮助管理项目中的bao依赖问题,另外它的很多功能都极大的减少了开发的难度,下面来介绍maven的安装及与eclipse的集成. maven的 ...
- html和html5详解
最近看群里聊天聊得最火热的莫过于手机网站和html5这两个词.可能有人会问,这两者有什么关系呢?随着这移动互联网快速发展的时代,尤其是4G时代已经来临的时刻,加上微软对"XP系统" ...
- canvas学习之API整理笔记(二)
前面我整理过一篇文章canvas学习之API整理笔记(一),从这篇文章我们已经可以基本了解到常用绘图的API.简单的变换和动画.而本篇文章的主要内容包括高级动画.像素操作.性能优化等知识点,讲解每个知 ...
- 函数式Android编程(II):Kotlin语言的集合操作
原文标题:Functional Android (II): Collection operations in Kotlin 原文链接:http://antonioleiva.com/collectio ...
- Android 使用pull,sax解析xml
pull解析xml文件 1.获得XmlpullParser类的引用 这里有两种方法 //解析器工厂 XmlPullParserFactory factory=XmlPullParserFactory. ...
- 手机游戏渠道SDK接入工具项目分享(三)拨开云雾是个坑
一直在纠结是先写框架设计还是先写掉过的坑,最后本这娱乐大众的态度先写掉过的坑让大家乐呵下. 项目开发过程中遇问题无数,回顾下8个大坑照成了项目一定程度上延期甚至返工. 项目一开始几个人把现有3家主流的 ...
- 巧用git bash
利用git base 实现的仿linux上面的命令,进行一些类linux的操作 .如 vim ls grep .. 例 : 利用grep递归查找当前文件夹中包含php5apache字样的文件
- Myeclipse开发环境下文件中出现的提示错误与解决方法:The import javax.servlet cannot be resolved?
1.开发工具:MyEclipse 2.右击项目 >> Build Path >> Add External Archives (Tomcat >> li ...
- 如何升级PowerShell
背景: 开发的PowerShell 脚本需要使用Invoke-RestMethod命令,发现在老的服务器上不支持这一命令,经过查询得知由于PS版本的问题.涉及到了PS的升级,需要介绍下PowerShe ...