• 根据任务,构建ComputationRequst
  • 编译ComputationRequst,获取NnetComputation

    std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request);

    • 创建计算——CreateComputation

      compiler.CreateComputation(opts, computation);

      • 从输出节点开始逐步向前计算依赖关系

        ComputationGraphBuilder builder(nnet_, &graph_);

        builder.Compute(*(requests_[segment]));

        每次向前深入一层,并计算所有Cindexes的依赖关系

        BuildGraphOneIter();

        对其中的每个Cindex,若需要计算其依赖:

        AddDependencies(cindex_id);

        • 若为kDescriptor,desc.GetDependencies(index, &input_cindexes);
        • 若为kComponent,component->GetInputIndexes(request_->misc_info, index, &input_indexes);
        • 若为kDimRange,input_cindexes[0] = Cindex(node.u.node_index, index);
        • 若为kInput,不需要依赖
      • 检查是否所有的输出都是可计算的

        if (!builder.AllOutputsAreComputable())

      • 将数据与运算组织为计算步

        对每个chunk中Cindexes根据不同网络层切分为phases,并以chunk为单位进行处理

        steps_computer.ComputeForSegment(*(requests_[segment]),phases_per_segment[segment]);

        将phases以节点为单位切分为sub-phases,并以sub-phases为单位进行处理

        ProcessSubPhase(request, sub_phases[j]);

        若sub-phases对于节点类型为:

        component-node:ProcessComponentStep(sub_phase);

        kSimpleComponent:除索引数-1外,将step复制为input_step

        else:从graph_->dependencies[c]获取依赖并插入到input_step中

        input-node:ProcessInputOrOutputStep(request, false, sub_phase);

        output-node:ProcessInputOrOutputStep(request, true, sub_phase);

        dim-range-node:ProcessDimRangeSubPhase(sub_phase);

    • 优化计算——Optimize

      Optimize(opt_config_, nnet_,

      MaxOutputTimeInRequest(request),

      computation);

  • 根据NnetComputation构建NnetComputer

    NnetComputer computer(opts_.compute_config, *computation,

    nnet_, nnet_to_update);

  • 运行NnetComputer

    computer.Run();

    对NnetComputation中所有Command迭代地运行

    ExecuteCommand();

    kPropagate:void *memo = component->Propagate(indexes, input, &output);

    kBackprop:component->Backprop(debug_str.str(), indexes,

    in_value, out_value, out_deriv,

    memo, upd_component,

    c.arg6 == 0 ? NULL : &in_deriv);

    ...

  • 从NnetComputer获取输出

    computer.GetOutputDestructive("output", &cu_output);

Kaldi nnet3的前向计算的更多相关文章

  1. Faster-rnnlm代码分析3 - EvaluateLM(前向计算ForwardPropagate)

    先采用一个简单的输入文本做测试 [root@cq01-forum-rstree01.cq01.baidu.com rnnlm]# pwd /home/users/chenghuige/rsc/app/ ...

  2. Xvector in Kaldi nnet3

    Xvector nnet Training of Xvector nnet Xvector nnet in Kaldi     Statistics Extraction Layer in Kaldi ...

  3. BP原理 - 前向计算与反向传播实例

    Outline 前向计算 反向传播 很多事情不是需要聪明一点,而是需要耐心一点,踏下心来认真看真的很简单的. 假设有这样一个网络层: 第一层是输入层,包含两个神经元i1 i2和截距b1: 第二层是隐含 ...

  4. [源码解析] PyTorch 流水线并行实现 (4)--前向计算

    [源码解析] PyTorch 流水线并行实现 (4)--前向计算 目录 [源码解析] PyTorch 流水线并行实现 (4)--前向计算 0x00 摘要 0x01 论文 1.1 引论 1.1.1 数据 ...

  5. Kaldi nnet3的fastlstm与标准LSTM

    标准LSTM:             与标准LSTM相比,Kaldi的fastlstm对相同或类似的矩阵运算进行了合并.     # Component specific to 'projected ...

  6. 关于入门深度学习mnist数据集前向计算的记录

    import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorfl ...

  7. [图解tensorflow源码] MatMul 矩阵乘积运算 (前向计算,反向梯度计算)

  8. [tensorflow源码分析] Conv2d卷积运算 (前向计算,反向梯度计算)

  9. 对Kaldi nnet3进行奇异值分解(SVD)以减小模型大小

    用处 基于SVD实现模型压缩以适配低功耗平台     根据nnet3bin/nnet3-copy,nnet3-copy或nnet3-am-copy的"--edits-config" ...

随机推荐

  1. HashMap线程不安全的体现

    前言:我们都知道HashMap是线程不安全的,在多线程环境中不建议使用,但是其线程不安全主要体现在什么地方呢,本文将对该问题进行解密. 1.jdk1.7中的HashMap 在jdk1.8中对HashM ...

  2. centos7下kubernetes(16。kubernetes-滚动更新)

    滚动更新:一次只更新一小部分副本,成功后,在更新更多的副本,最终完成所有副本的更新. 滚动更新的最大好处是零停机,整个更新过程始终有副本在运行,从而保证了业余的连续性 下面部署三个副本的应用,出事镜像 ...

  3. 洛谷 P5020 货币系统

    题目描述 在网友的国度中共有$ n $种不同面额的货币,第 i种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为\(n\).面额数组为 \(a[1..n]\ ...

  4. Mybatis实现高级映射一对一、一对多查询

    终于把论文写得差不多了,系统也不急着完成,可以抽出点时间来完成这个系列的博客了.在写本博客之前我是惶恐不安的,高级映射一贯是持久层框架里的重中之重,小到自己开发小系统,大到企业级开发,表的存在从来就不 ...

  5. Spring Boot2.0使用Spring Security

     一.Spring Secutity简介     Spring 是一个非常流行和成功的 Java 应用开发框架.Spring Security 基于 Spring 框架,提供了一套 Web 应用安全性 ...

  6. 面试必问Elasticsearch倒排索引原理

    本文摘抄自我的微信公众号"程序员柯南",欢迎关注!原文阅读 倒排索引是目前搜索引擎公司对搜索引擎最常用的存储方式,也是搜索引擎的核心内容,在搜索引擎的实际应用中,有时需要按照关键字 ...

  7. UEFI和Legacy及UEFI+Legacy启动的区别

    uefi和legacy是两种不同的引导方式,uefi是新式的BIOS,legacy是传统BIOS.你在UEFI模式下安装的系统,只能用UEFI模式引导:同理,如果你是在Legacy模式下安装的系统,也 ...

  8. 给hMailServer添加DKIM图文教程

    https://www.hmailserver.org/viewtopic.php?f=4&t=12

  9. 基于MySQL的Activiti6引擎创建

    整个activiti6的搭建都是在spring boot2之上的,首先贴一下pom: <dependencies> <!-- 这是activiti需要的最基本的核心引擎 --> ...

  10. H5的段落标签、图片标签、列表标签与链接标签

    段落标签 (1)<p>段落标签</p> (2)<nobr>强制不换行标签,会出现滚动条</nobr> (3)<pre>保留原始排版标签< ...