Week Six

F Score

\[\begin{aligned}
P &= &\dfrac{2}{\dfrac{1}{P}+\dfrac{1}{R}}\\
&= &2 \dfrac{PR}{P+R}
\end{aligned}\]

Week Seven

Support Vector Machine

Cost Function

\[\begin{aligned}
&\min_{\theta}\lbrack-\dfrac{1}{m}{\sum_{y_{i}\in Y, x_{i} \in X}{y_{i} \log h(\theta^{T}x_{i})}+(1-y_{i})\log (1-h(\theta^{T}x_{i}))+\dfrac{\lambda}{2m} \sum_{\theta_{i} \in \theta}{\theta_{i}^{2}}}\rbrack\\
&\Rightarrow \min_{\theta}[-\sum_{y_{i} \in Y,x_{i} \in X}{y_{i} \log{h(\theta^{T}x_{i})}+(1-y_{i})\log(1-h(\theta^{T}x_{i}}))+\dfrac{\lambda}{2}\sum_{\theta_{i} \in \theta }{\theta^2_{i}}]\\
&\Rightarrow\min_{\theta}[C\sum_{y_{i} \in Y,x_{i} \in X}{y_{i} \log{h(\theta^{T}x_{i})}+(1-y_{i})\log(1-h(\theta^{T}x_{i}}))+\sum_{\theta_{i} \in \theta }{\theta^2_{i}}]\\
\end{aligned}\]
C is somewhat \(\dfrac{1}{\lambda}\).

  • Large C:

    • lower bias, high variance
  • Small C:
    • Higher bias, low variance
  • Large \(\sigma^2\): Features \(f_{i}\) vary more smoothly.
    • Higher bias, low variance
  • Small \(\sigma^2\): Features \(f_{i}\) vary more sharply.
    • Lower bias, high variance.
      \[\begin{aligned}
      & \dfrac{1}{2} \sum_{\theta_{i} \in \theta}{\theta_{i}^2}\\
      &s.t&\theta^{T}x_{i} \geq 1, if\ y_{i} = 1&\\
      &&\theta^{T}x_{i} \leq -1, if\ y_{i} = 0&
      \end{aligned}\]

PS

If features are too many related to m, use logistic regression or SVM without a kernel.

If n is small, m is intermediate, use SVM with Gaussian kernal.

If n is small, m is large, add more features and use logistic regression or SVM without a kernel.

Week Eight

K-means

Cost Function

It try to minimize
\[\min_{\mu}{\dfrac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}}||^2\]
For the first loop, minimize the cost function by varing the centorid. For the second loop, it minimize the cost funcion with cetorid fixed and realign the centorid of every x in the training set.

Initialize

Initialize the centorids randomly. Randomly select k samples from the training set and set the centorids to these random selected samples.

It is possible that K-meas fall into the local minimum, So repeat to initialize the centorids randomly until the cost(distortion) is suitable for your purposes.

K-means converge all the time and it will not increase the cost during the training processs. More centoirds will decease the cost, if not, the k-means must fall into the local minimum and reinitialize the centorid until the cost is less.

PCA (Principal Component Analysis)

Restruct x from z meeting the below nonequation
\[1-\dfrac{\dfrac{1}{m} \sum_{i=1}^{m}||x^{(i)}-x^{(i)}_{approximation}||^2}{\dfrac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2} \geq 0.99\]
PS:
the nonequation can be equal to the below
\[\begin{aligned}
[U, S, D] &= svd(sigma)\\
U_{reduce} &= U(:, 1:k)\\
z &= U_{reduce}' * x\\
x_{approximation} &= U_{reduce} * x\\\\
S &= \left( \begin{array}{ccc}
s_{11}&0&\cdots&0\\
0&s_{22}&\cdots&0\\
\vdots&\vdots&\ddots&\vdots\\
0&0&\cdots&s_{nn}
\end{array} \right)\\\\
\dfrac{\sum_{i=1}^{k}s_{ii}^2}{\sum_{i=1}^{m} s_{ii}^2} &\geq 0.99
\end{aligned}\]

Week Nine

Anomaly Detection

Gaussian Distribution

Multivariate Gaussian Distribution takes the connection of different variants into account
\[p(x) = \dfrac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}}e^{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)}\]
Single variant Gaussian Distribution is a special example of Multivariate Gaussian Distribution, where
\[\Sigma = \left(\begin{array}{ccc}
\sigma_{11}&&&&\\
&\sigma_{22}&&&\\
&&\ddots&&\\
&&&\sigma_{nn}&\\
\end{array}\right)\]
When training the Anomaly Detection, we can use Maximum Likelihood Estimation
\[\begin{aligned}
\mu &= \dfrac{1}{m} \sum_{i=1}^{m}x^{(i)}\\
\Sigma &= \dfrac{1}{m} \sum_{i=1}^{m} (x^{(i)}-\mu)(x^{(i)}-\mu)^{T}
\end{aligned}\]
When we use single variant anomaly detection, the numerical cost is much cheaper than multivariant. But may need to add some new features to distinguish the normal and non-normal.

Recommender System

Cost Function

\[\begin{aligned}
J(X,\Theta) = \dfrac{1}{2} \sum_{(i,j):r(i,j)=1}((\theta^{(j)})^{T}x^{(i)}-y^{(i,j)})^2 + \dfrac{\lambda}{2}[\sum_{i=1}^{n_{m}}\sum_{k=1}^{n}(x_k^{(i)})^2 + \sum_{j=1}^{n_\mu} \sum_{k=1}^n(\theta_{k}^{(j)})^2]\\
J(X,\Theta) = \dfrac{1}{2}Sum\{(X\Theta'-Y).*R\} + \dfrac{\lambda}{2}(Sum\{\Theta.^2\} + Sum\{X.^2\}\\
\end{aligned}\]
\[\begin{aligned}
\dfrac{\partial J}{\partial X} = ((X\Theta'-Y).*R) \Theta + \lambda X\\
\dfrac{\partial J}{\partial \Theta} = ((X\Theta'-Y).*R)'X + \lambda \Theta
\end{aligned}\]

MachineLearningOnCoursera的更多相关文章

随机推荐

  1. 汇编语言笔记v1.0

    1.loop的用法 loop指令的格式是:loop标号,cpu执行loop指令的时候,要进行两步操作 1:(cx)=(cx)-1 2:判断cx中的值,不为零则转至标号处执行,如果为零,则向下执行 这里 ...

  2. Android系统目录结构详解

    Android系统基于linux内核.JAVA应用,算是一个小巧精致的系统.虽是开源,但不像Linux一般庞大,娇小可亲,于是国内厂商纷纷开发出自己基于Android的操作系统.在此呼吁各大厂商眼光放 ...

  3. Kafka(二)设计原理

    1.持久性 kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化几乎没有可能.因为kafka是对日志进行append操作,因此磁 ...

  4. XSS,CSRF,Cookie防劫持的处理

    Cookie与sessionHTTP天然是无状态的协议, 为了维持和跟踪用户的状态, 引入了Cookie和Session. Cookie包含了浏览器客户端的用户凭证, 相对较小. Session则维护 ...

  5. Java读取一个文本文件拼接成一个字符串(readFileToString)

    import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.I ...

  6. vue 生命周期详解

  7. 2018-2019 20165221 网络对抗 Exp5 MSF基础

    2018-2019 20165221 网络对抗 Exp5 MSF基础 实践内容: 重点掌握metassploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms0 ...

  8. 「JavaScript面向对象编程指南」闭包

    闭包 JS只有函数作用域,函数外为全局变量,函数内为局部变量 绿圆是函数fn的作用域,在这范围内可访问局部变量b和全局变量a,橙圆是fn内部函数inner的作用域,此范围内可访问自身作用域内的变量c, ...

  9. 基于XML搭建SpringMVC项目

    *如果你需要将应用部署到不支持Servlet3.0容器中 或者 你只是对web.xml情有独钟,那我们只能按照传统的方式,通过web.xml来配置SpringMVC. *搭建SpringMVC需要在w ...

  10. 使用scrapy爬虫,爬取17k小说网的案例-方法一

    无意间看到17小说网里面有一些小说小故事,于是决定用爬虫爬取下来自己看着玩,下图这个页面就是要爬取的来源. a 这个页面一共有125个标题,每个标题里面对应一个内容,如下图所示 下面直接看最核心spi ...