引言

大家在面试中有没遇到面试官问你下面六句Sql的区别呢

select * from table where id = ?
select * from table where id < ?
select * from table where id = ? lock in share mode
select * from table where id < ? lock in share mode
select * from table where id = ? for update
select * from table where id < ? for update

如果你能清楚的说出,这六句sql在不同的事务隔离级别下,是否加锁,加的是共享锁还是排他锁,是否存在间隙锁,那这篇文章就没有看的意义了。
之所以写这篇文章是因为目前为止网上这方面的文章太片面,都只说了一半,且大多没指明隔离级别,以及where后跟的是否为索引条件列。在此,我就不一一列举那些有误的文章了,大家可以自行百度一下,大多都是讲不清楚。
OK,要回答这个问题,先问自己三个问题

  • 当前事务隔离级别是什么
  • id列是否存在索引
  • 如果存在索引是聚簇索引还是非聚簇索引呢?

OK,开始回答

正文

本文假定读者,看过我的《MySQL(Innodb)索引的原理》。如果没看过,额,你记得三句话吧

  • innodb一定存在聚簇索引,默认以主键作为聚簇索引
  • 有几个索引,就有几棵B+树(不考虑hash索引的情形)
  • 聚簇索引的叶子节点为磁盘上的真实数据。非聚簇索引的叶子节点还是索引,指向聚簇索引B+树。

下面啰嗦点基础知识

锁类型

共享锁(S锁):假设事务T1对数据A加上共享锁,那么事务T2可以读数据A,不能修改数据A。
排他锁(X锁):假设事务T1对数据A加上共享锁,那么事务T2不能读数据A,不能修改数据A。
我们通过updatedelete等语句加上的锁都是行级别的锁。只有LOCK TABLE … READLOCK TABLE … WRITE才能申请表级别的锁。
意向共享锁(IS锁):一个事务在获取(任何一行/或者全表)S锁之前,一定会先在所在的表上加IS锁。
意向排他锁(IX锁):一个事务在获取(任何一行/或者全表)X锁之前,一定会先在所在的表上加IX锁。

意向锁存在的目的?

OK,这里说一下意向锁存在的目的。假设事务T1,用X锁来锁住了表上的几条记录,那么此时表上存在IX锁,即意向排他锁。那么此时事务T2要进行LOCK TABLE … WRITE的表级别锁的请求,可以直接根据意向锁是否存在而判断是否有锁冲突。

加锁算法

我的说法是来自官方文档:
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html
加上自己矫揉造作的见解得出。
ok,记得如下三种,本文就够用了
Record Locks:简单翻译为行锁吧。注意了,该锁是对索引记录进行加锁!锁是在加索引上而不是行上的。注意了,innodb一定存在聚簇索引,因此行锁最终都会落到聚簇索引上!
Gap Locks:简单翻译为间隙锁,是对索引的间隙加锁,其目的只有一个,防止其他事物插入数据。在Read Committed隔离级别下,不会使用间隙锁。这里我对官网补充一下,隔离级别比Read Committed低的情况下,也不会使用间隙锁,如隔离级别为Read Uncommited时,也不存在间隙锁。当隔离级别为Repeatable ReadSerializable时,就会存在间隙锁。
Next-Key Locks:这个理解为Record Lock+索引前面的Gap Lock。记住了,锁住的是索引前面的间隙!比如一个索引包含值,10,11,13和20。那么,间隙锁的范围如下

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

快照读和当前读

最后一点基础知识了,大家坚持看完,这些是后面分析的基础!
在mysql中select分为快照读和当前读,执行下面的语句

select * from table where id = ?;

执行的是快照读,读的是数据库记录的快照版本,是不加锁的。(这种说法在隔离级别为Serializable中不成立,后面我会补充。)
那么,执行

select * from table where id = ? lock in share mode;

会对读取记录加S锁 (共享锁),执行

select * from table where id = ? for update

会对读取记录加X锁 (排他锁),那么

加的是表锁还是行锁呢?

针对这点,我们先回忆一下事务的四个隔离级别,他们由弱到强如下所示:

  • Read Uncommited(RU):读未提交,一个事务可以读到另一个事务未提交的数据!
  • Read Committed (RC):读已提交,一个事务可以读到另一个事务已提交的数据!
  • Repeatable Read (RR):可重复读,加入间隙锁,一定程度上避免了幻读的产生!注意了,只是一定程度上,并没有完全避免!我会在下一篇文章说明!另外就是记住从该级别才开始加入间隙锁(这句话记下来,后面有用到)!
  • Serializable:串行化,该级别下读写串行化,且所有的select语句后都自动加上lock in share mode,即使用了共享锁。因此在该隔离级别下,使用的是当前读,而不是快照读。

那么关于是表锁还是行锁,大家可以看到网上最流传的一个说法是这样的,

InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。 InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!

这句话大家可以搜一下,都是你抄我的,我抄你的。那么,这句话本身有两处错误!
错误一:并不是用表锁来实现锁表的操作,而是利用了Next-Key Locks,也可以理解为是用了行锁+间隙锁来实现锁表的操作!
为了便于说明,我来个例子,假设有表数据如下,pId为主键索引

pId(int) name(varchar) num(int)
1 aaa 100
2 bbb 200
7 ccc 200

执行语句(name列无索引)

select * from table where name = `aaa` for update

那么此时在pId=1,2,7这三条记录上存在行锁(把行锁住了)。另外,在(-∞,1)(1,2)(2,7)(7,+∞)上存在间隙锁(把间隙锁住了)。因此,给人一种整个表锁住的错觉!

ps:对该结论有疑问的,可自行执行show engine innodb status;语句进行分析。

错误二:所有文章都不提隔离级别!
注意我上面说的,之所以能够锁表,是通过行锁+间隙锁来实现的。那么,RURC都不存在间隙锁,这种说法在RURC中还能成立么?
因此,该说法只在RRSerializable中是成立的。如果隔离级别为RURC,无论条件列上是否有索引,都不会锁表,只锁行!

分析

下面来对开始的问题作出解答,假设有表如下,pId为主键索引

pId(int) name(varchar) num(int)
1 aaa 100
2 bbb 200
3 bbb 300
7 ccc 200

RC/RU+条件列非索引

(1)select * from table where num = 200
不加任何锁,是快照读。
(2)select * from table where num > 200
不加任何锁,是快照读。
(3)select * from table where num = 200 lock in share mode
当num = 200,有两条记录。这两条记录对应的pId=2,7,因此在pId=2,7的聚簇索引上加行级S锁,采用当前读。
(4)select * from table where num > 200 lock in share mode
当num > 200,有一条记录。这条记录对应的pId=3,因此在pId=3的聚簇索引上加上行级S锁,采用当前读。
(5)select * from table where num = 200 for update
当num = 200,有两条记录。这两条记录对应的pId=2,7,因此在pId=2,7的聚簇索引上加行级X锁,采用当前读。
(6)select * from table where num > 200 for update
当num > 200,有一条记录。这条记录对应的pId=3,因此在pId=3的聚簇索引上加上行级X锁,采用当前读。

RC/RU+条件列是聚簇索引

恩,大家应该知道pId是主键列,因此pId用的就是聚簇索引。此情况其实和RC/RU+条件列非索引情况是类似的。
(1)select * from table where pId = 2
不加任何锁,是快照读。
(2)select * from table where pId > 2
不加任何锁,是快照读。
(3)select * from table where pId = 2 lock in share mode
在pId=2的聚簇索引上,加S锁,为当前读。
(4)select * from table where pId > 2 lock in share mode
在pId=3,7的聚簇索引上,加S锁,为当前读。
(5)select * from table where pId = 2 for update
在pId=2的聚簇索引上,加X锁,为当前读。
(6)select * from table where pId > 2 for update
在pId=3,7的聚簇索引上,加X锁,为当前读。

这里,大家可能有疑问

为什么条件列加不加索引,加锁情况是一样的?

ok,其实是不一样的。在RC/RU隔离级别中,MySQL Server做了优化。在条件列没有索引的情况下,尽管通过聚簇索引来扫描全表,进行全表加锁。但是,MySQL Server层会进行过滤并把不符合条件的锁当即释放掉,因此你看起来最终结果是一样的。但是RC/RU+条件列非索引比本例多了一个释放不符合条件的锁的过程!

RC/RU+条件列是非聚簇索引

我们在num列上建上非唯一索引。此时有一棵聚簇索引(主键索引,pId)形成的B+索引树,其叶子节点为硬盘上的真实数据。以及另一棵非聚簇索引(非唯一索引,num)形成的B+索引树,其叶子节点依然为索引节点,保存了num列的字段值,和对应的聚簇索引。
这点可以看看我的《MySQL(Innodb)索引的原理》
接下来分析开始
(1)select * from table where num = 200
不加任何锁,是快照读。
(2)select * from table where num > 200
不加任何锁,是快照读。
(3)select * from table where num = 200 lock in share mode
当num = 200,由于num列上有索引,因此先在 num = 200的两条索引记录上加行级S锁。接着,去聚簇索引树上查询,这两条记录对应的pId=2,7,因此在pId=2,7的聚簇索引上加行级S锁,采用当前读。
(4)select * from table where num > 200 lock in share mode
当num > 200,由于num列上有索引,因此先在符合条件的 num = 300的一条索引记录上加行级S锁。接着,去聚簇索引树上查询,这条记录对应的pId=3,因此在pId=3的聚簇索引上加行级S锁,采用当前读。
(5)select * from table where num = 200 for update
当num = 200,由于num列上有索引,因此先在 num = 200的两条索引记录上加行级X锁。接着,去聚簇索引树上查询,这两条记录对应的pId=2,7,因此在pId=2,7的聚簇索引上加行级X锁,采用当前读。
(6)select * from table where num > 200 for update
当num > 200,由于num列上有索引,因此先在符合条件的 num = 300的一条索引记录上加行级X锁。接着,去聚簇索引树上查询,这条记录对应的pId=3,因此在pId=3的聚簇索引上加行级X锁,采用当前读。

RR/Serializable+条件列非索引

RR级别需要多考虑的就是gap lock,他的加锁特征在于,无论你怎么查都是锁全表。如下所示
接下来分析开始
(1)select * from table where num = 200
在RR级别下,不加任何锁,是快照读。
在Serializable级别下,在pId = 1,2,3,7(全表所有记录)的聚簇索引上加S锁。并且在
聚簇索引的所有间隙(-∞,1)(1,2)(2,3)(3,7)(7,+∞)加gap lock
(2)select * from table where num > 200
在RR级别下,不加任何锁,是快照读。
在Serializable级别下,在pId = 1,2,3,7(全表所有记录)的聚簇索引上加S锁。并且在
聚簇索引的所有间隙(-∞,1)(1,2)(2,3)(3,7)(7,+∞)加gap lock
(3)select * from table where num = 200 lock in share mode
在pId = 1,2,3,7(全表所有记录)的聚簇索引上加S锁。并且在
聚簇索引的所有间隙(-∞,1)(1,2)(2,3)(3,7)(7,+∞)加gap lock
(4)select * from table where num > 200 lock in share mode
在pId = 1,2,3,7(全表所有记录)的聚簇索引上加S锁。并且在
聚簇索引的所有间隙(-∞,1)(1,2)(2,3)(3,7)(7,+∞)加gap lock
(5)select * from table where num = 200 for update
在pId = 1,2,3,7(全表所有记录)的聚簇索引上加X锁。并且在
聚簇索引的所有间隙(-∞,1)(1,2)(2,3)(3,7)(7,+∞)加gap lock
(6)select * from table where num > 200 for update
在pId = 1,2,3,7(全表所有记录)的聚簇索引上加X锁。并且在
聚簇索引的所有间隙(-∞,1)(1,2)(2,3)(3,7)(7,+∞)加gap lock

RR/Serializable+条件列是聚簇索引

恩,大家应该知道pId是主键列,因此pId用的就是聚簇索引。该情况的加锁特征在于,如果where后的条件为精确查询(=的情况),那么只存在record lock。如果where后的条件为范围查询(><的情况),那么存在的是record lock+gap lock。
(1)select * from table where pId = 2
在RR级别下,不加任何锁,是快照读。
在Serializable级别下,是当前读,在pId=2的聚簇索引上加S锁,不存在gap lock。
(2)select * from table where pId > 2
在RR级别下,不加任何锁,是快照读。
在Serializable级别下,是当前读,在pId=3,7的聚簇索引上加S锁。在(2,3)(3,7)(7,+∞)加上gap lock
(3)select * from table where pId = 2 lock in share mode
是当前读,在pId=2的聚簇索引上加S锁,不存在gap lock。
(4)select * from table where pId > 2 lock in share mode
是当前读,在pId=3,7的聚簇索引上加S锁。在(2,3)(3,7)(7,+∞)加上gap lock
(5)select * from table where pId = 2 for update
是当前读,在pId=2的聚簇索引上加X锁。
(6)select * from table where pId > 2 for update
在pId=3,7的聚簇索引上加X锁。在(2,3)(3,7)(7,+∞)加上gap lock
(7)select * from table where pId = 6 [lock in share mode|for update]
注意了,pId=6是不存在的列,这种情况会在(3,7)上加gap lock。
(8)select * from table where pId > 18 [lock in share mode|for update]
注意了,pId>18,查询结果是空的。在这种情况下,是在(7,+∞)上加gap lock。

RR/Serializable+条件列是非聚簇索引

这里非聚簇索引,需要区分是否为唯一索引。因为如果是非唯一索引,间隙锁的加锁方式是有区别的。
先说一下,唯一索引的情况。如果是唯一索引,情况和RR/Serializable+条件列是聚簇索引类似,唯一有区别的是:这个时候有两棵索引树,加锁是加在对应的非聚簇索引树和聚簇索引树上!大家可以自行推敲!
下面说一下,非聚簇索引是非唯一索引的情况,他和唯一索引的区别就是通过索引进行精确查询以后,不仅存在record lock,还存在gap lock。而通过唯一索引进行精确查询后,只存在record lock,不存在gap lock。老规矩在num列建立非唯一索引
(1)select * from table where num = 200
在RR级别下,不加任何锁,是快照读。
在Serializable级别下,是当前读,在pId=2,7的聚簇索引上加S锁,在num=200的非聚集索引上加S锁,在(100,200)(200,300)加上gap lock。
(2)select * from table where num > 200
在RR级别下,不加任何锁,是快照读。
在Serializable级别下,是当前读,在pId=3的聚簇索引上加S锁,在num=300的非聚集索引上加S锁。在(200,300)(300,+∞)加上gap lock
(3)select * from table where num = 200 lock in share mode
是当前读,在pId=2,7的聚簇索引上加S锁,在num=200的非聚集索引上加S锁,在(100,200)(200,300)加上gap lock。
(4)select * from table where num > 200 lock in share mode
是当前读,在pId=3的聚簇索引上加S锁,在num=300的非聚集索引上加S锁。在(200,300)(300,+∞)加上gap lock。
(5)select * from table where num = 200 for update
是当前读,在pId=2,7的聚簇索引上加S锁,在num=200的非聚集索引上加X锁,在(100,200)(200,300)加上gap lock。
(6)select * from table where num > 200 for update
是当前读,在pId=3的聚簇索引上加S锁,在num=300的非聚集索引上加X锁。在(200,300)(300,+∞)加上gap lock
(7)select * from table where num = 250 [lock in share mode|for update]
注意了,num=250是不存在的列,这种情况会在(200,300)上加gap lock。
(8)select * from table where num > 400 [lock in share mode|for update]
注意了,pId>400,查询结果是空的。在这种情况下,是在(400,+∞)上加gap lock。

转至:https://www.cnblogs.com/rjzheng/p/9950951.html

史上最全的select加锁分析(Mysql)的更多相关文章

  1. 【原创】惊!史上最全的select加锁分析(Mysql)

    引言 大家在面试中有没遇到面试官问你下面六句Sql的区别呢 select * from table where id = ? select * from table where id < ? s ...

  2. 最全的select加锁分析(Mysql)

    引言 大家在面试中有没遇到面试官问你下面六句Sql的区别呢 select * from table where id = ? select * from table where id < ? s ...

  3. select加锁分析(Mysql)

    [原创]惊!史上最全的select加锁分析(Mysql) 前言 大家在面试中有没遇到面试官问你下面六句Sql的区别呢 select * from table where id = ? select * ...

  4. 史上最全 | 39个RNAseq分析工具与对比

    文献:Sahraeian S M E, Mohiyuddin M, Sebra R, et al. Gaining comprehensive biological insight into the ...

  5. 史上最全的njRAT通信协议分析

    Njrat,又称Bladabindi,该木马家族使用.NET框架编写,是一个典型的RAT类程序,通过控制端可以操作受控端的文件.进程.服务.注册表内容,也可以盗取受控端的浏览器的保存的密码信息等内容. ...

  6. Redis分布式锁 (图解-秒懂-史上最全)

    文章很长,而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三 ...

  7. Zookeeper 分布式锁 (图解+秒懂+史上最全)

    文章很长,而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三 ...

  8. Redis与DB的数据一致性解决方案(史上最全)

    文章很长,而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三 ...

  9. nacos 实战(史上最全)

    文章很长,而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三 ...

随机推荐

  1. 使用zabbix监控nginx的活动连接数

    使用zabbix监控nginx的活动连接数 1.方法简述 zabbix可以自定义很多监控,只要是能通过命令获取到相关的值,就可以在zabbix的监控中增加该对象进行监控,在zabbix中,该对象称之为 ...

  2. 快速删除C#代码中的空白行

    使用正则表达式 ^\s*\n 选中内容或类全部替换为空

  3. git最基础操作一

    1. 从远端克隆:git clone -b 克隆的分支 git的地址( eg:git clone -b master https://gitee.com/test/test.git ) 2.提交修改的 ...

  4. 2017-12-19python全栈9期第四天第二节之列表的增删查改之元祖是只读列表、可循环查询、可切片、儿子不能改、孙子可以改

    #!/user/bin/python# -*- coding:utf-8 -*-tu = ('zs','ls','ww',[1,2,3,4,5,'zxcvb'],'zl')print(tu[3])pr ...

  5. Python语言的循环语句、迭代器与生成器、函数学习

    while循环语句 无限循环 我们可以通过设置条件表达式永远不为false来实现无限循环,实例如下: for语句 Python for循环可以遍历任何序列的项目,如一个列表或者一个字符串 Python ...

  6. 【OpenGL】代码记录01创建窗口

    创建空窗口: #include<iostream> // GLEW #define GLEW_STATIC #include <GL/glew.h> // GLFW #incl ...

  7. 【gitlab】gitlab快速部署教程

    gitlab快速部署教程 部署环境 Ubuntu 16.04(亲测可用) 开始部署 安装依赖 sudo apt-get install curl openssh-server ca-certifica ...

  8. java abs(绝对值) , max(最大值),min(最小值) 方法的应用

    在写程序是,我们常常会计算一个数的绝对值,这时我们可以使用java里的方法来计算 public class Demo1{ public static void main(String [] args) ...

  9. thrift安装及python和c++版本调试

    一.安装过程 1.安装依赖库 ]# yum install boost-devel-static libboost-dev libboost-test-dev libboost-program-opt ...

  10. 如何在submit上运行php文件

    一..把php加入到环境变量 二.在sublmie中新建编译系统 三.添加一下代码,修改成php当前的目录地址,保存在默认的路径下,命名为php.sublime-build { "cmd&q ...