题意:求n个点有向图其中SCC是一个的方案数

考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做。(但是这里不能用Ln,因为推不出来)

设$f_n$为答案,

$g_n$为n个点的有向图,分成若干个连通块,每个连通块都是一个SCC,且当连通块大小为奇数时候贡献1系数,偶数时候贡献-1系数。(这里把系数放进去可以避免再来一个函数的麻烦!)

$h_n$表示n个点有向图个数$h_n=2^{n*(n-1)}$

$h_n=\sum_{i=1}^nC(n,i)\times g(i)\times 2^{n\times(n-i)}\times h(n-i)$

$g_n=f_n-\sum_{i=1}^{n-1}C(n-1,i-1)\times g(n-i)$

然后把C拆开,变成EGF,$2^{n\times(n-i)}$可以用之前套路处理COGS 2353 2355 2356 2358 有标号的DAG计数

即可得到答案

COGS 2396 2397 [HZOI 2015]有标号的强连通图计数的更多相关文章

  1. cogs [HZOI 2015]有标号的二分图计数

    题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘 ...

  2. cogs 2355. [HZOI 2015] 有标号的DAG计数 II

    题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...

  3. COGS 2353 2355 2356 2358 有标号的DAG计数

    不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...

  4. 【题解】有标号的DAG计数4

    [HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...

  5. 【题解】有标号的DAG计数3

    [HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...

  6. 【题解】有标号的DAG计数2

    [HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...

  7. 【题解】有标号的DAG计数1

    [HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...

  8. COGS 2392 2393 2395 有标号的二分图计数

    有黑白关系: 枚举左部点(黑色点),然后$2^{i*(n-i)}$处理方法同:COGS 2353 2355 2356 2358 有标号的DAG计数 无关系: 发现,假设$f(i)$是一个连通块,对于一 ...

  9. COGS 有标号的DAG/强连通图计数

    COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的 ...

随机推荐

  1. 生成Csv格式的字符串

    using System; using System.Collections.Generic; using System.Linq; using System.Reflection; using Sy ...

  2. Python基础——8错误、调试和测试

    捕捉错误 try: print('try...') r = 10 / int('2') print('result:', r) except ValueError as e: print('Value ...

  3. Python中的一些小技巧

    1.Boolean值可以当做一个数值 a = [5,6,7,8,9] print(a[True]) #prints 6 print(a[False]) #prints 5 2.两种方法实现 a = 1 ...

  4. Linux下的快速配置虚拟环境virtualenvwrapper

    一 安装包 pip3 install virtualenv virtualenvwrapper 二 设置linux的用户个人配置文件~/.bashrc WORKON_HOME=~/Envs 设置vir ...

  5. 使用superlance插件增强supervisor的监控能力

    supervisor与superlance简介 supervisor是一款用python编写的进程监控.进程守护和进程管理的工具,可以工作在各种UNIX-like的操作系统上,通过简单的配置就可以启动 ...

  6. C# for循环或者foreach往List中添加对象的时候前面的数据总被最后加入的覆盖

    昨天我旁边小姐姐遇到一个问题,就是在执行for循环往list添加数据的时候,前面的数据信息总是被后面的数据信息所覆盖.  这样编写就会造成这样的数据效果:(所有的数据都会被覆盖)     问题原因:对 ...

  7. Docker(1):CentOS7 安装Docker

    1.查看系统内核,docker要求系统的内核版本高于3.10 #  uname -r 2.升级yum包,确保最新 #   yum update 3.安装所需要依赖包 #   yum install - ...

  8. [已决解]关于Hadoop start-all.sh启动问题

    问题一:出现Attempting to operate on hdfs namenode as root 写在最前注意: 1.master,slave都需要修改start-dfs.sh,stop-df ...

  9. day22---面向对象基础初识

    面向过程编程: 核心是过程两个字,指的是解决问题的步骤,即先干什么再干什么,基于面向过程设计的程序就好比在设计一条流水线,是一种机械的思维方式. 优点:复杂问题流程化, 缺点:程序的可扩展性差 面向对 ...

  10. 《通过C#学Proto.Actor模型》之 HelloWorld

    在微服务中,数据最终一致性的一个解决方案是通过有状态的Actor模型来达到,那什么是Actor模型呢? Actor是并行的计算模型,包含状态,行为,并且包含一个邮箱,来异步处理消息. 关于Actor的 ...