题意:求n个点有向图其中SCC是一个的方案数

考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做。(但是这里不能用Ln,因为推不出来)

设$f_n$为答案,

$g_n$为n个点的有向图,分成若干个连通块,每个连通块都是一个SCC,且当连通块大小为奇数时候贡献1系数,偶数时候贡献-1系数。(这里把系数放进去可以避免再来一个函数的麻烦!)

$h_n$表示n个点有向图个数$h_n=2^{n*(n-1)}$

$h_n=\sum_{i=1}^nC(n,i)\times g(i)\times 2^{n\times(n-i)}\times h(n-i)$

$g_n=f_n-\sum_{i=1}^{n-1}C(n-1,i-1)\times g(n-i)$

然后把C拆开,变成EGF,$2^{n\times(n-i)}$可以用之前套路处理COGS 2353 2355 2356 2358 有标号的DAG计数

即可得到答案

COGS 2396 2397 [HZOI 2015]有标号的强连通图计数的更多相关文章

  1. cogs [HZOI 2015]有标号的二分图计数

    题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘 ...

  2. cogs 2355. [HZOI 2015] 有标号的DAG计数 II

    题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...

  3. COGS 2353 2355 2356 2358 有标号的DAG计数

    不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...

  4. 【题解】有标号的DAG计数4

    [HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...

  5. 【题解】有标号的DAG计数3

    [HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...

  6. 【题解】有标号的DAG计数2

    [HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...

  7. 【题解】有标号的DAG计数1

    [HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...

  8. COGS 2392 2393 2395 有标号的二分图计数

    有黑白关系: 枚举左部点(黑色点),然后$2^{i*(n-i)}$处理方法同:COGS 2353 2355 2356 2358 有标号的DAG计数 无关系: 发现,假设$f(i)$是一个连通块,对于一 ...

  9. COGS 有标号的DAG/强连通图计数

    COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的 ...

随机推荐

  1. 通过fromdata实现上传文件

    其实呢,文件上传的插件很多,可是现在做的东西要求尽量少用插件,所以就自己写了一下. 之前也用node写过对文件处理方面的东西,这次用php写着试一下. a.html文件 <!DOCTYPE ht ...

  2. Sql Server2014数据库清理日志

    Sql Server2014数据库日志占用特别大,清理方法.直接贴代码 USE[master] GO ALTER DATABASE db_Name SET RECOVERY SIMPLE WITH N ...

  3. Python简单的多线程demo:常用写法

    简单多线程实现:启动50个线程,并计算执行时间. import threading import time def run(n): time.sleep(3) print("task:&qu ...

  4. Linux下的快速配置虚拟环境virtualenvwrapper

    一 安装包 pip3 install virtualenv virtualenvwrapper 二 设置linux的用户个人配置文件~/.bashrc WORKON_HOME=~/Envs 设置vir ...

  5. 新建swap分区的规划、挂载和自动挂载示例

    注:来自Linux系统管理_磁盘分区和格式化的扩展 Linux系统管理_磁盘分区和格式化:http://murongqingqqq.blog.51cto.com/2902694/1361918 思路: ...

  6. Configuring Apache Kafka for Performance and Resource Management

    Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...

  7. python实现数据结构单链表

    #python实现数据结构单链表 # -*- coding: utf-8 -*- class Node(object): """节点""" ...

  8. SQL 增删改语句

    阅读目录 一:插入数据 二:更新数据 三:删除数据 回到顶部 一:插入数据 把数据插入表中的最简单方法是使用基本的 INSERT 语法.它的要求是需要我们指定表名和插入到新行中的值. 1.1 插入完整 ...

  9. DeeplabV3+ 命令行不显示miou的解决

    首先看到训练时会在命令行里输出 loss 和 total loss,那是怎么做到的呢,通过分析 train.py 源码,看到如下代码 total_loss = tf.cond( should_log, ...

  10. Error:Execution failed for task ':app:processDebugManifest'. Manifest merger failed with multiple errors, see logs

    这个异常在网上一搜会出现很多答案,也可能都对. 我都尝试过但是不符合我这边的要求,问题得不到解决.网上的说法是对的,jar包冲突.不过究竟是哪里冲突没办法判断. 最后尝试了一下在module的中没用的 ...