MySQLSource-Flume
1. 自定义Source说明
实时监控MySQL,从MySQL中获取数据传输到HDFS或者其他存储框架,所以此时需要我们自己实现MySQLSource。
2. 自定义MySQLSource步骤
根据官方说明自定义mysqlsource需要继承AbstractSource类并实现Configurable和PollableSource接口。
实现相应方法:
getBackOffSleepIncrement()//暂不用
getMaxBackOffSleepInterval()//暂不用
configure(Context context)//初始化context
process()//获取数据(从mysql获取数据,业务处理比较复杂,所以我们定义一个专门的类——SQLSourceHelper来处理跟mysql的交互),封装成event并写入channel,这个方法被循环调用
stop()//关闭相关的资源
PollableSource:从source中提取数据,将其发送到channel。
Configurable:实现了Configurable的任何类都含有一个context,使用context获取配置信息。
3. 代码实现
1、导入pom依赖
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>8</source> #JDK版本
<target>8</target>
</configuration>
</plugin>
</plugins>
</build> <dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.7.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>
</dependencies>
2、添加配置信息
在classpath下添加jdbc.properties和log4j.properties
jdbc.properties
dbDriver=com.mysql.jdbc.Driver
dbUrl=jdbc:mysql://hadoop101:3306/mysqlsource?useUnicode=true&characterEncoding=utf-8
dbUser=root
dbPassword=123456
log4j.properties
#--------console-----------
log4j.rootLogger=info,myconsole,myfile
log4j.appender.myconsole=org.apache.log4j.ConsoleAppender
log4j.appender.myconsole.layout=org.apache.log4j.SimpleLayout
#log4j.appender.myconsole.layout.ConversionPattern =%d [%t] %-5p [%c] - %m%n #log4j.rootLogger=error,myfile
log4j.appender.myfile=org.apache.log4j.DailyRollingFileAppender
log4j.appender.myfile.File=/tmp/flume.log
log4j.appender.myfile.layout=org.apache.log4j.PatternLayout
log4j.appender.myfile.layout.ConversionPattern =%d [%t] %-5p [%c] - %m%n
3、SQLSourceHelper
1) 属性说明:
属性 说明(括号中为默认值)
runQueryDelay 查询时间间隔(10000)
batchSize 缓存大小(100)
startFrom 查询语句开始id(0)
currentIndex 查询语句当前id,每次查询之前需要查元数据表
recordSixe 查询返回条数
table 监控的表名
columnsToSelect 查询字段(*)
customQuery 用户传入的查询语句
query 查询语句
defaultCharsetResultSet 编码格式(UTF-8)
2)方法说明:
2) 方法说明:
方法 说明
SQLSourceHelper(Context context) 构造方法,初始化属性及获取JDBC连接
InitConnection(String url, String user, String pw) 获取JDBC连接
checkMandatoryProperties() 校验相关属性是否设置(实际开发中可增加内容)
buildQuery() 根据实际情况构建sql语句,返回值String
executeQuery() 执行sql语句的查询操作,返回值List<List<Object>>
getAllRows(List<List<Object>> queryResult) 将查询结果转换为String,方便后续操作
updateOffset2DB(int size) 根据每次查询结果将offset写入元数据表
execSql(String sql) 具体执行sql语句方法
getStatusDBIndex(int startFrom) 获取元数据表中的offset
queryOne(String sql) 获取元数据表中的offset实际sql语句执行方法
close() 关闭资源
3) 代码实现:
SQLSourceHelper .java
package com.atguigu.source; import org.apache.flume.Context;
import org.apache.flume.conf.ConfigurationException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.io.IOException;
import java.sql.*;
import java.text.ParseException;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties; public class SQLSourceHelper { private static final Logger LOG = LoggerFactory.getLogger(SQLSourceHelper.class); private int runQueryDelay, //两次查询的时间间隔
startFrom, //开始id
currentIndex, //当前id
recordSixe = 0, //每次查询返回结果的条数
maxRow; //每次查询的最大条数 private String table, //要操作的表
columnsToSelect, //用户传入的查询的列
customQuery, //用户传入的查询语句
query, //构建的查询语句
defaultCharsetResultSet;//编码集 //上下文,用来获取配置文件
private Context context; //为定义的变量赋值(默认值),可在flume任务的配置文件中修改
private static final int DEFAULT_QUERY_DELAY = 10000;
private static final int DEFAULT_START_VALUE = 0;
private static final int DEFAULT_MAX_ROWS = 2000;
private static final String DEFAULT_COLUMNS_SELECT = "*";
private static final String DEFAULT_CHARSET_RESULTSET = "UTF-8"; private static Connection conn = null;
private static PreparedStatement ps = null;
private static String connectionURL, connectionUserName, connectionPassword; //加载静态资源
static {
Properties p = new Properties();
try {
p.load(SQLSourceHelper.class.getClassLoader().getResourceAsStream("jdbc.properties"));
connectionURL = p.getProperty("dbUrl");
connectionUserName = p.getProperty("dbUser");
connectionPassword = p.getProperty("dbPassword");
Class.forName(p.getProperty("dbDriver"));
} catch (IOException | ClassNotFoundException e) {
LOG.error(e.toString());
}
} //获取JDBC连接
private static Connection InitConnection(String url, String user, String pw) {
try {
Connection conn = DriverManager.getConnection(url, user, pw);
if (conn == null)
throw new SQLException();
return conn;
} catch (SQLException e) {
e.printStackTrace();
}
return null;
} //构造方法
SQLSourceHelper(Context context) throws ParseException {
//初始化上下文
this.context = context; //有默认值参数:获取flume任务配置文件中的参数,读不到的采用默认值
this.columnsToSelect = context.getString("columns.to.select", DEFAULT_COLUMNS_SELECT);
this.runQueryDelay = context.getInteger("run.query.delay", DEFAULT_QUERY_DELAY);
this.startFrom = context.getInteger("start.from", DEFAULT_START_VALUE);
this.defaultCharsetResultSet = context.getString("default.charset.resultset", DEFAULT_CHARSET_RESULTSET); //无默认值参数:获取flume任务配置文件中的参数
this.table = context.getString("table");
this.customQuery = context.getString("custom.query");
connectionURL = context.getString("connection.url");
connectionUserName = context.getString("connection.user");
connectionPassword = context.getString("connection.password");
conn = InitConnection(connectionURL, connectionUserName, connectionPassword); //校验相应的配置信息,如果没有默认值的参数也没赋值,抛出异常
checkMandatoryProperties();
//获取当前的id
currentIndex = getStatusDBIndex(startFrom);
//构建查询语句
query = buildQuery();
} //校验相应的配置信息(表,查询语句以及数据库连接的参数)
private void checkMandatoryProperties() {
if (table == null) {
throw new ConfigurationException("property table not set");
}
if (connectionURL == null) {
throw new ConfigurationException("connection.url property not set");
}
if (connectionUserName == null) {
throw new ConfigurationException("connection.user property not set");
}
if (connectionPassword == null) {
throw new ConfigurationException("connection.password property not set");
}
} //构建sql语句
private String buildQuery() {
String sql = "";
//获取当前id
currentIndex = getStatusDBIndex(startFrom);
LOG.info(currentIndex + "");
if (customQuery == null) {
sql = "SELECT " + columnsToSelect + " FROM " + table;
} else {
sql = customQuery;
}
StringBuilder execSql = new StringBuilder(sql);
//以id作为offset
if (!sql.contains("where")) {
execSql.append(" where ");
execSql.append("id").append(">").append(currentIndex);
return execSql.toString();
} else {
int length = execSql.toString().length();
return execSql.toString().substring(0, length - String.valueOf(currentIndex).length()) + currentIndex;
}
} //执行查询
List<List<Object>> executeQuery() {
try {
//每次执行查询时都要重新生成sql,因为id不同
customQuery = buildQuery();
//存放结果的集合
List<List<Object>> results = new ArrayList<>();
if (ps == null) {
//
ps = conn.prepareStatement(customQuery);
}
ResultSet result = ps.executeQuery(customQuery);
while (result.next()) {
//存放一条数据的集合(多个列)
List<Object> row = new ArrayList<>();
//将返回结果放入集合
for (int i = 1; i <= result.getMetaData().getColumnCount(); i++) {
row.add(result.getObject(i));
}
results.add(row);
}
LOG.info("execSql:" + customQuery + "\nresultSize:" + results.size());
return results;
} catch (SQLException e) {
LOG.error(e.toString());
// 重新连接
conn = InitConnection(connectionURL, connectionUserName, connectionPassword);
}
return null;
} //将结果集转化为字符串,每一条数据是一个list集合,将每一个小的list集合转化为字符串
List<String> getAllRows(List<List<Object>> queryResult) {
List<String> allRows = new ArrayList<>();
if (queryResult == null || queryResult.isEmpty())
return allRows;
StringBuilder row = new StringBuilder();
for (List<Object> rawRow : queryResult) {
Object value = null;
for (Object aRawRow : rawRow) {
value = aRawRow;
if (value == null) {
row.append(",");
} else {
row.append(aRawRow.toString()).append(",");
}
}
allRows.add(row.toString());
row = new StringBuilder();
}
return allRows;
} //更新offset元数据状态,每次返回结果集后调用。必须记录每次查询的offset值,为程序中断续跑数据时使用,以id为offset
void updateOffset2DB(int size) {
//以source_tab做为KEY,如果不存在则插入,存在则更新(每个源表对应一条记录)
String sql = "insert into flume_meta(source_tab,currentIndex) VALUES('"
+ this.table
+ "','" + (recordSixe += size)
+ "') on DUPLICATE key update source_tab=values(source_tab),currentIndex=values(currentIndex)";
LOG.info("updateStatus Sql:" + sql);
execSql(sql);
} //执行sql语句
private void execSql(String sql) {
try {
ps = conn.prepareStatement(sql);
LOG.info("exec::" + sql);
ps.execute();
} catch (SQLException e) {
e.printStackTrace();
}
} //获取当前id的offset
private Integer getStatusDBIndex(int startFrom) {
//从flume_meta表中查询出当前的id是多少
String dbIndex = queryOne("select currentIndex from flume_meta where source_tab='" + table + "'");
if (dbIndex != null) {
return Integer.parseInt(dbIndex);
}
//如果没有数据,则说明是第一次查询或者数据表中还没有存入数据,返回最初传入的值
return startFrom;
} //查询一条数据的执行语句(当前id)
private String queryOne(String sql) {
ResultSet result = null;
try {
ps = conn.prepareStatement(sql);
result = ps.executeQuery();
while (result.next()) {
return result.getString(1);
}
} catch (SQLException e) {
e.printStackTrace();
}
return null;
} //关闭相关资源
void close() {
try {
ps.close();
conn.close();
} catch (SQLException e) {
e.printStackTrace();
}
} int getCurrentIndex() {
return currentIndex;
} void setCurrentIndex(int newValue) {
currentIndex = newValue;
} int getRunQueryDelay() {
return runQueryDelay;
} String getQuery() {
return query;
} String getConnectionURL() {
return connectionURL;
} private boolean isCustomQuerySet() {
return (customQuery != null);
} Context getContext() {
return context;
} public String getConnectionUserName() {
return connectionUserName;
} public String getConnectionPassword() {
return connectionPassword;
} String getDefaultCharsetResultSet() {
return defaultCharsetResultSet;
}
}
MySQLSource.java
package com.atguigu.source;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.PollableSource;
import org.apache.flume.conf.Configurable;
import org.apache.flume.event.SimpleEvent;
import org.apache.flume.source.AbstractSource;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.text.ParseException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List; public class MySQLSource extends AbstractSource implements Configurable, PollableSource { //打印日志
private static final Logger LOG = LoggerFactory.getLogger(MySQLSource.class);
//定义sqlHelper
private SQLSourceHelper sqlSourceHelper; @Override
public long getBackOffSleepIncrement() {
return 0;
} @Override
public long getMaxBackOffSleepInterval() {
return 0;
} @Override
public void configure(Context context) {
try {
//初始化
sqlSourceHelper = new SQLSourceHelper(context);
} catch (ParseException e) {
e.printStackTrace();
}
} @Override
public Status process() throws EventDeliveryException {
try {
//查询数据表
List<List<Object>> result = sqlSourceHelper.executeQuery();
//存放event的集合
List<Event> events = new ArrayList<>();
//存放event头集合
HashMap<String, String> header = new HashMap<>();
//如果有返回数据,则将数据封装为event
if (!result.isEmpty()) {
List<String> allRows = sqlSourceHelper.getAllRows(result);
Event event = null;
for (String row : allRows) {
event = new SimpleEvent();
event.setBody(row.getBytes());
event.setHeaders(header);
events.add(event);
}
//将event写入channel
this.getChannelProcessor().processEventBatch(events);
//更新数据表中的offset信息
sqlSourceHelper.updateOffset2DB(result.size());
}
//等待时长
Thread.sleep(sqlSourceHelper.getRunQueryDelay());
return Status.READY;
} catch (InterruptedException e) {
LOG.error("Error procesing row", e);
return Status.BACKOFF;
}
} @Override
public synchronized void stop() {
LOG.info("Stopping sql source {} ...", getName());
try {
//关闭资源
sqlSourceHelper.close();
} finally {
super.stop();
}
}
}
4. 测试
1、jar包准备
1) 将mysql驱动包放入flume的lib目录下
[kris@hadoop101 flume]$ cp /opt/software/mysql-connector-java-5.1./mysql-connector-java-5.1.-bin.jar ./lib
2) 打包项目并将jar包放入flume的lib目录下
2、配置文件准备
1)创建配置文件并打开
vim mysql.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = com.atguigu.source.MySQLSource
a1.sources.r1.connection.url = jdbc:mysql://192.168.1.101:3306/mysqlsource
a1.sources.r1.connection.user = root
a1.sources.r1.connection.password =
a1.sources.r1.table = student
a1.sources.r1.columns.to.select = *
#a1.sources.r1.incremental.column.name = id
#a1.sources.r1.incremental.value =
a1.sources.r1.run.query.delay= # Describe the sink
a1.sinks.k1.type = logger # Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
3、mysql表准备
1) 创建mysqlsource数据库
CREATE DATABASE mysqlsource;
2) 在mysqlsource数据库下创建数据表student和元数据表flume_meta
CREATE DATABASE mysqlsource;
USE mysqlsource;
CREATE TABLE student(
id INT(11) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(255) NOT NULL,
PRIMARY KEY(id)); CREATE TABLE flume_meta (
source_tab VARCHAR(255) NOT NULL,
currentIndex VARCHAR(255) NOT NULL,
PRIMARY KEY(source_tab));
3) 向数据表中添加数据
1 kris
2 egon
3 alex
5、测试并查看结果
1) 任务执行
[kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/mysql.conf -Dflume.root.logger=INFO,console
2) 结果展示,如图所示:
往studnet表中更新数据:
MySQLSource-Flume的更多相关文章
- 大数据技术之_09_Flume学习_Flume概述+Flume快速入门+Flume企业开发案例+Flume监控之Ganglia+Flume高级之自定义MySQLSource+Flume企业真实面试题(重点)
第1章 Flume概述1.1 Flume定义1.2 Flume组成架构1.2.1 Agent1.2.2 Source1.2.3 Channel1.2.4 Sink1.2.5 Event1.3 Flum ...
- Flume高级之自定义MySQLSource
1 自定义Source说明 Source是负责接收数据到Flume Agent的组件.Source组件可以处理各种类型.各种格式的日志数据,包括avro.thrift.exec.jms.spoolin ...
- Flume案例Ganglia监控
Flume案例和Flume监控系统的使用: 安装 将apache-flume-1.7.0-bin.tar.gz上传到linux的/opt/software目录下 解压apache-flume-1.7. ...
- [数据同步]Flume 抽取Mysql历史数据
一.Flume安装目录 1.安装部署目录 [admin@test01 apache-flume-1.9.0-bin]$ pwd /opt/apache-flume-1.9.0-bin 2.将所需jar ...
- Flume组件
1.什么是Flume:apache顶级项目,主要用来做数据采集.分布式.高可用,将海量日志进行采集.聚合.传输的系统.能够对数据进行简单处理在发送到接收方. 2.Flume组件:source.chan ...
- 大数据技术之Flume
第1章 概述 1.1 Flume定义 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统.Flume基于流式架构,灵活简单. 1.2 Flume组成架构 ...
- 如何远程调试自定义开发的Flume应用
一.前言 Flume作为当下最流行的大数据采集组件之一.其本身拥有分布式/高可靠/高可用等优点,但相比较于Flink/Spark/Kafka等大数据组件,其对于本地调试的功能支持度并不高,如果我们没有 ...
- Flume1 初识Flume和虚拟机搭建Flume环境
前言: 工作中需要同步日志到hdfs,以前是找运维用rsync做同步,现在一般是用flume同步数据到hdfs.以前为了工作简单看个flume的一些东西,今天下午有时间自己利用虚拟机搭建了 ...
- Flume(4)实用环境搭建:source(spooldir)+channel(file)+sink(hdfs)方式
一.概述: 在实际的生产环境中,一般都会遇到将web服务器比如tomcat.Apache等中产生的日志倒入到HDFS中供分析使用的需求.这里的配置方式就是实现上述需求. 二.配置文件: #agent1 ...
- Flume(3)source组件之NetcatSource使用介绍
一.概述: 本节首先提供一个基于netcat的source+channel(memory)+sink(logger)的数据传输过程.然后剖析一下NetcatSource中的代码执行逻辑. 二.flum ...
随机推荐
- Egret获取和显示时间,年,月,日,时分秒
let now = new Date(); this.nowYear = now.getFullYear(); this.nowMonth = now.getMonth() + 1; let noww ...
- Oracle (分类、数据库类型、序列)
分类: 1.DDL (定义语句) create .alter .drop 不需要commit create table aaa( tt1 varchart ) 2. DML (操纵语句) lnset ...
- excel写入操作
字典列表类型数据写入excel. #导入xlwt库 import xlwt import os # 步骤1:获取excel文件的绝对路径 dirPath = os.path.join(os.getcw ...
- ps入门学习
快捷键 打开 ctrl+O 切换显示窗口 ctrl+tab 隐藏工具栏和面板 tab 只隐藏面板不隐藏工具栏 shift+tab 切换屏幕模式 F 文件的新建与格式 1.新建文档Ctrl+N,存 ...
- LeetCode编程训练 - 滑动窗口(Sliding Window)
滑动窗口基础 滑动窗口常用来解决求字符串子串问题,借助map和计数器,其能在O(n)时间复杂度求子串问题.滑动窗口和双指针(Two pointers)有些类似,可以理解为往同一个方向走的双指针.常用滑 ...
- [Swift]LeetCode272. 最近的二分搜索树的值 II $ Closest Binary Search Tree Value II
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [Swift]LeetCode620. 有趣的电影 | Not Boring Movies
SQL架构 Create table If Not Exists cinema (id ), description varchar(), rating , )) Truncate table cin ...
- [Swift]LeetCode730. 统计不同回文子字符串 | Count Different Palindromic Subsequences
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- Python - 命令式编程与符号编程
原文链接:https://zh.d2l.ai/chapter_computational-performance/hybridize.html本文是对原文内容的摘取和扩展. 命令式编程(imperat ...
- scala时间和时间戳互转
时间转换为时间戳: import java.text.SimpleDateFormat object test { def main(args: Array[String]): Unit = { va ...