Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity field. Bull. Math. Sci. 8 (2018), no. 1, 33--47] we have improved the results in Kukavica and Ziane (J Math Phys 48:065203, 2007) and Cao (Discrete Contin Dyn Syst 26:1141–1151, 2010) simultaneously. The result reads: the condition
$$\bee\label{me}\p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{3\sqrt{37}}{4}-3\leq q\leq 3\eee$$
could ensure the regularity of the solution.
see https://link.springer.com/article/10.1007/s13373-016-0098-x.
Regularity criteria for NSE 4: $\p_3u$的更多相关文章
- Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...
- 液晶流在齐次 Besov 空间中的正则性准则
在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous ...
- Collections of Zujin Zhang's Published works
I am not good, but I shall do my best to be better. Any questions, please feel free to contact zhang ...
- 乘积型Sobolev不等式
(Multiplicative Sobolev inequality). Let $\mu,\lambda$ and $\gamma$ be three parameters that satisfy ...
随机推荐
- (转载)Python之道1-环境搭建与pycharm的配置django安装及MySQL数据库配置
近期做那个python的开发,今天就来简单的写一下开发路线的安装及配置, 开发路线 Python3.6.1+Pycharm5.0.6+Django1.11+MySQL5.7.18 1-安装Python ...
- 1.1 NCE21 Daniel Mendoza
1.text translation Two hundred years ago, boxing matches were very popular in England. At that time/ ...
- 登陆验证AuthorizeAttribute
自定义验证,验证失败后:Response.Redirect.
- Pyqt5-Python应用开发——第一个小程序的实现
环境:python 3.6.6 编辑器:pycharm 其他:QtDesigner:Qt Designer,是一个直观可见的全方位 GUI 构造器,它所设计出来的用户界面能够在多种平台上使用.它是 Q ...
- Nodejs OracleDB详细解读
//导入oracledb模块 //基于版本@3.0.1 安装指令npm install oracledb //node访问oracleDB需要搭建访问环境,否则无法正常访问 //创建Oracle对象 ...
- web服务器、tomcat、servlet是什么?它们之间的关系又是什么?
今天偶然看到常见web服务器的介绍有Apache HTTP server.Nginx.Microsoft IIS.GWS,心中不禁产生了疑问,这些都是什么呢?一直认为tomcat就是web服务器,以下 ...
- KVM的安装使用
1.包的安装 2.虚拟机的创建安装 3.安装基本参数的说明 4.常用操作 一.包的安装 1.#yum install -y kvm qemu-kvm libvirt virt-install brid ...
- go笔记-熔断器
参考: https://studygolang.com/articles/13254 区别:(限速器 VS 熔断器) 限速器(limiter)可以限制接口自身被调的频率 熔断器可监控所调用的服务的失败 ...
- Scrapy中选择器的用法
官方文档:https://doc.scrapy.org/en/latest/topics/selectors.html Using selectors Constructing selectors R ...
- iso data 聚类算法
isodata算法就是先拟定一个预期类,再选取一些聚类中心,通过不断合并或者分裂聚类,达到分类的目的 关键就是在于,如何分裂,合并 要合并或者分裂 必须要确定一些指标 所以第一步就是要确定 某些指标 ...