[再寄小读者之数学篇](2014-06-23 Hardy 空间、BMO空间与 Triebel-Lizorkin 空间)
$$\bex 0<p<\infty\ra H_p=\dot F^0_{p,2};\quad BMO=\dot F^0_{\infty,2}. \eex$$ see [H. Triebel, Theory of function spaces I, Birkh\"auser,Basel, 1983] Page 244.
[再寄小读者之数学篇](2014-06-23 Hardy 空间、BMO空间与 Triebel-Lizorkin 空间)的更多相关文章
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 算法"新"名词
这个“新”是对于自己而言. 最近几天接触到很多新的名词,如: 回溯法(backtracking):以前知道,但很少用 动态规划(dynamic programming):序列型.矩阵型.区间型.背包等 ...
- 用微软官方的 HTML Help Workshop制作的CHM文件不显示图片解决办法
制作CHM文档,方便小巧还易于查看,用处自不必多说了,最近想把这个季度所学习的内容全部制作成CHM格式文档,给自己后续用来温故而知新,同时也可以做为后起之秀避坑法宝.但是在生成CHM文档之后发现有些地 ...
- .NET CORE学习笔记系列(2)——依赖注入【2】基于IoC的设计模式
原文:https://www.cnblogs.com/artech/p/net-core-di-02.html 正如我们在<控制反转>提到过的,很多人将IoC理解为一种“面向对象的设计模式 ...
- python开发【lambda篇】
lambda 与 python 高级函数的配套使用 filter函数 过滤 __author__ = "Tang" # filter(lambda, []) people = [' ...
- Spark-RDD之Partition源码分析
概要 Spark RDD主要由Dependency.Partition.Partitioner组成,Partition是其中之一.一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的spl ...
- Use of Recv-Q and Send-Q
From my man page: Recv-Q Established: The count of bytes not copied by the user program connected to ...
- 强大的scrollReveal库,炫酷的页面缓入效果。
首先我问来看一下这个强大的插件能做出什么效果,下面是我找的一个网站: http://kepler.gl/#/, 接下来看看官网给出的效果:https://scrollrevealjs.org/. 是不 ...
- Redis原理
RESP协议 支持tcp协议.基本数据类型,比如数组,字符串等,也可支持其他的通信场景. 模拟redis接收传输过来的set数据 //ServerSocket监听6379端口模拟redis publi ...
- Ubuntu 14.04 结束支持该如何应对?
Ubuntu 14.04 即将于 2019 年 4 月 30 日结束支持.这意味着在此日期之后 Ubuntu 14.04 用户将无法获得安全和维护更新. 你甚至不会获得已安装应用的更新,并且不手动修改 ...
- 在Bootstrap开发框架中使用dataTable直接录入表格行数据(2)--- 控件数据源绑定
在前面随笔<在Bootstrap开发框架中使用dataTable直接录入表格行数据>中介绍了在Web页面中使用Jquery DataTable插件进行对数据直接录入操作,这种处理能够给用户 ...