【转载请注明出处】http://www.cnblogs.com/mashiqi

2017/12/16

有时我们需要对PDEs中的各项进行变量替换,比如把$\frac{\text{d}}{\text{d}x} f(x)$换成$\frac{\text{d}}{\text{d}y}g(y)$(其中$f(x)=g(y)$)。比如我想把$x$换成$\frac{1}{x}$,那么我可以令$y = \frac{1}{x}$、令$g(y) = f(x)$,然后用$g$对$y$的各阶导数$g^{(n)}(y)$来表示$f^{(n)}(x)$。那么我们可以使用以下语句:

(* Example 1 *)
y[x_] = 1/x;
Dt[g[y[x]], {x, 2}];
% /. x -> InverseFunction[y][y];
Refine[%,y!=0]
% // TeXForm (* 注意TeXForm里面 T X F 这几个都是大写 *)
% // TraditionalForm

Example 1说明:假设$y=1/x, ~f(x)=g(y)$,则 $f''(x) = y^4 g''(y)+2 y^3 g'(y)$。

(* Example 2 *)
y[x_] = 1/Sqrt[x];
Dt[g[y[x]], {x, 3}];
% /. x -> InverseFunction[y][y];
Refine[%, y > 0]
% // TeXForm (* 注意TeXForm里面 T X F 这几个都是大写 *)
% // TraditionalForm

Example 2说明:假设$y=1/\sqrt{x}, ~f(x)=g(y)$,则 $f'(x) = -\frac{1}{2} y^3 g'(y)$。

(* Example 3 假设$f(x)$是radial的。将$\Delta f(x)$记为$g(|x|)$,并用$g$来表示$f$ *)
y[x1_, x2_, x3_] = Sqrt[x1^2 + x2^2 + x3^2];
(* D[g[y[x1,x2,x3]],{x1,2}]+D[g[y[x1,x2,x3]],{x2,2}]+D[g[y[x1,x2,x3]],{x3,2}] *)
Laplacian[g[y[x1, x2, x3]], {x1, x2, x3}];
Simplify[%]
% /. x1^2 + x2^2 + x3^2 -> y^2;
Refine[%, y > 0]

Example 3说明:假设$x \in \mathbb{R}^3, ~y=\|x\|$,并且函数$f(x)$是radial的并记$f(x)=g(y)$,则 $\Delta_x f(x) = g''(y)+\frac{2 g'(y)}{y}$。

(* Example 4 假设$y=y(x)$,那么如何将$\frac{\mathrm{d}^2}{\mathrm{d}x^2}$用$y$表示 *)
Dt[g[y[x]], {x, 2}]

Example 4说明:假设$y=y(x)$,那么如何将$\frac{\mathrm{d}^2}{\mathrm{d}x^2}$用$y$表示出来:我们应该有:$\frac{\mathrm{d}^2}{\mathrm{d}x^2} = (y'(x))^2 \frac{\mathrm{d}^2}{\mathrm{d}y^2} + y''(x) \frac{\mathrm{d}}{\mathrm{d}y}$.

Mathematica求微分换元的更多相关文章

  1. 用mathematica求六元一次方程组且方程个数比变量个数少一个

    问题详见知乎:https://www.zhihu.com/question/68000713 我的问题:有5个方程,6个变量,其实我是想求出来de1=(系数)*dS1的形式,系数有Cij组成,Cij为 ...

  2. [转]二重积分换元法的一种简单证明 (ps:里面的符号有点小错误,理解就好。。。

    ---恢复内容开始--- 10.3二重积分的换元积分法 在一元函数定积分的计算中,我们常常进行换元,以达删繁就简的目的,当然,二重积分也有换元积分的问题. 首先让我们回顾一下前面曾讨论的一个事实. 设 ...

  3. 求一个n元一次方程的解,Gauss消元

    求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...

  4. MATLAB求微分

    求微分 diff(函数) , 求的一阶导数;diff(函数, n) , 求的n阶导数(n是具体整数);diff(函数,变量名), 求对的偏导数;diff(函数, 变量名,n) ,求对的n阶偏导数; & ...

  5. YAPTCHA UVALive - 4382(换元+威尔逊定理)

    题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...

  6. python求微分方程组的数值解曲线01

    本人最近在写一篇关于神经网络同步的文章,其一部分模型为: x_i^{\Delta}(t)= -a_i*x_i(t)+ b_i* f(x_i(t))+ \sum\limits_{j \in\{i-1, ...

  7. Mathematica 求出解后代入变量

    Solve[2 x - 3 == 0, x] x = x //. %[[1]]

  8. MT【180】齐次化+换元

    已知实数$a,b$满足$a^2-ab-2b^2=1,$则$a^2+b^2$的取值范围_____ 解答:$\textbf{方法一}$由已知得$(a-2b)(a+b)=1$,设$x=a-2b,y=a+b$ ...

  9. MachineLearningPreface

    机器学习(包括监督学习, 无监督学习, 半监督学习与强化学习) 监督学习(包括分类与线性回归) 分类(标签的值为散列的"yes"或者"no", "go ...

随机推荐

  1. ansible 剧本

    ansible的管理与剧本   首先我们安装一个ansible. 在7版本,直接用yum安装就可以 yum -y install ansible 然后清空ansible的配置文件,在里面写入自己需要管 ...

  2. Python_Mix*re模块基础方法,进阶,正则表达式的使用

    re模块import re 基础方法 findall:匹配所有 ,每一项都是列表中的一个元素,返回的是列表 search只匹配从左到右的第一个,得到的不是直接的结果,而是一个变量,通过这个变量的gro ...

  3. SQL循环表里的数据

    select * into #t1 from Userinfodeclare @id varchar(2000);while (exists(select ProjectID from #t1))be ...

  4. java基本类型和数字类及其相关计算

    --- java 八大基本类型 byte  short int long double float boolean char --对应的包装类 Byte Short Integer Long Doub ...

  5. 简易祖玛--canvas

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. 响应式编程系列(一):什么是响应式编程?reactor入门

    响应式编程 系列文章目录 (一)什么是响应式编程?reactor入门 (二)Flux入门学习:流的概念,特性和基本操作 (三)Flux深入学习:流的高级特性和进阶用法 (四)reactor-core响 ...

  7. 北航OO第一单元总结

    我本着公平公开公正的态度作出以下评价: 1.面向对象真的很修身养性 2.有一个好的身体非常重要 3.互相hack可以暴露人的阴暗面 好了,步入正题. 一.作业分析 1.第一次作业分析 1.1类图 1. ...

  8. python入门(四)

    今天主要记录下python中文件的编辑与函数. 一.修改文件 一)简单粗暴--直接修改 1.打开一个文件,获取到所有内容2.对内容进行修改3.清空原来的文件4.把新的内容写进去 f = open('u ...

  9. Java线程面试题Top50

    不管你是新程序员还是老手,你一定在面试中遇到过有关线程的问题.Java 语言一个重要的特点就是内置了对并发的支持,让 Java 大受企业和程序员的欢迎.大多数待遇丰厚的 Java 开发职位都要求开发者 ...

  10. java web后台工作原理

    多时候我们都想知道,web容器或web服务器(比如Tomcat或者jboss)是怎样工作的?它们是怎样处理来自全世界的http请求的?它们在幕后做了什么动作?Java Servlet API(例如Se ...