【转载请注明出处】http://www.cnblogs.com/mashiqi

2017/12/16

有时我们需要对PDEs中的各项进行变量替换,比如把$\frac{\text{d}}{\text{d}x} f(x)$换成$\frac{\text{d}}{\text{d}y}g(y)$(其中$f(x)=g(y)$)。比如我想把$x$换成$\frac{1}{x}$,那么我可以令$y = \frac{1}{x}$、令$g(y) = f(x)$,然后用$g$对$y$的各阶导数$g^{(n)}(y)$来表示$f^{(n)}(x)$。那么我们可以使用以下语句:

(* Example 1 *)
y[x_] = 1/x;
Dt[g[y[x]], {x, 2}];
% /. x -> InverseFunction[y][y];
Refine[%,y!=0]
% // TeXForm (* 注意TeXForm里面 T X F 这几个都是大写 *)
% // TraditionalForm

Example 1说明:假设$y=1/x, ~f(x)=g(y)$,则 $f''(x) = y^4 g''(y)+2 y^3 g'(y)$。

(* Example 2 *)
y[x_] = 1/Sqrt[x];
Dt[g[y[x]], {x, 3}];
% /. x -> InverseFunction[y][y];
Refine[%, y > 0]
% // TeXForm (* 注意TeXForm里面 T X F 这几个都是大写 *)
% // TraditionalForm

Example 2说明:假设$y=1/\sqrt{x}, ~f(x)=g(y)$,则 $f'(x) = -\frac{1}{2} y^3 g'(y)$。

(* Example 3 假设$f(x)$是radial的。将$\Delta f(x)$记为$g(|x|)$,并用$g$来表示$f$ *)
y[x1_, x2_, x3_] = Sqrt[x1^2 + x2^2 + x3^2];
(* D[g[y[x1,x2,x3]],{x1,2}]+D[g[y[x1,x2,x3]],{x2,2}]+D[g[y[x1,x2,x3]],{x3,2}] *)
Laplacian[g[y[x1, x2, x3]], {x1, x2, x3}];
Simplify[%]
% /. x1^2 + x2^2 + x3^2 -> y^2;
Refine[%, y > 0]

Example 3说明:假设$x \in \mathbb{R}^3, ~y=\|x\|$,并且函数$f(x)$是radial的并记$f(x)=g(y)$,则 $\Delta_x f(x) = g''(y)+\frac{2 g'(y)}{y}$。

(* Example 4 假设$y=y(x)$,那么如何将$\frac{\mathrm{d}^2}{\mathrm{d}x^2}$用$y$表示 *)
Dt[g[y[x]], {x, 2}]

Example 4说明:假设$y=y(x)$,那么如何将$\frac{\mathrm{d}^2}{\mathrm{d}x^2}$用$y$表示出来:我们应该有:$\frac{\mathrm{d}^2}{\mathrm{d}x^2} = (y'(x))^2 \frac{\mathrm{d}^2}{\mathrm{d}y^2} + y''(x) \frac{\mathrm{d}}{\mathrm{d}y}$.

Mathematica求微分换元的更多相关文章

  1. 用mathematica求六元一次方程组且方程个数比变量个数少一个

    问题详见知乎:https://www.zhihu.com/question/68000713 我的问题:有5个方程,6个变量,其实我是想求出来de1=(系数)*dS1的形式,系数有Cij组成,Cij为 ...

  2. [转]二重积分换元法的一种简单证明 (ps:里面的符号有点小错误,理解就好。。。

    ---恢复内容开始--- 10.3二重积分的换元积分法 在一元函数定积分的计算中,我们常常进行换元,以达删繁就简的目的,当然,二重积分也有换元积分的问题. 首先让我们回顾一下前面曾讨论的一个事实. 设 ...

  3. 求一个n元一次方程的解,Gauss消元

    求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...

  4. MATLAB求微分

    求微分 diff(函数) , 求的一阶导数;diff(函数, n) , 求的n阶导数(n是具体整数);diff(函数,变量名), 求对的偏导数;diff(函数, 变量名,n) ,求对的n阶偏导数; & ...

  5. YAPTCHA UVALive - 4382(换元+威尔逊定理)

    题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...

  6. python求微分方程组的数值解曲线01

    本人最近在写一篇关于神经网络同步的文章,其一部分模型为: x_i^{\Delta}(t)= -a_i*x_i(t)+ b_i* f(x_i(t))+ \sum\limits_{j \in\{i-1, ...

  7. Mathematica 求出解后代入变量

    Solve[2 x - 3 == 0, x] x = x //. %[[1]]

  8. MT【180】齐次化+换元

    已知实数$a,b$满足$a^2-ab-2b^2=1,$则$a^2+b^2$的取值范围_____ 解答:$\textbf{方法一}$由已知得$(a-2b)(a+b)=1$,设$x=a-2b,y=a+b$ ...

  9. MachineLearningPreface

    机器学习(包括监督学习, 无监督学习, 半监督学习与强化学习) 监督学习(包括分类与线性回归) 分类(标签的值为散列的"yes"或者"no", "go ...

随机推荐

  1. 移动端最强适配(rem适配之px2rem)&& 移动端结合Vuex实现简单loading加载效果

    一.rem之px2rem适配 前言:相信许多小伙伴上手移动端时面对各式各样的适配方案,挑选出一个自己觉得简便.实用.高效的适配方案是件很纠结的事情. 深有体会... 经过多个移动端项目从最初的 vie ...

  2. mysql 插件相关命令

    # 查看mysql的插件 show plugins \G # 安装mysql 插件 INSTALL PLUGIN spartan SONAME 'ha_spartan.so'; # 卸载 UNINST ...

  3. PDF 补丁丁 0.6.0.3363 版发布(修复无法保存应用程序设置的问题)

    本测试版修复了上一测试版无法保存应用程序设置的问题,以及导出导入信息文件的若干小问题.

  4. 基于观察者模式-----otto源码分析

    一.otto简介 otto是支付公司square一个专注于android的开源项目,该项目是一个event bus模式的消息框架,是一个基于Guava的增强型事件总线.旨在将应用程序的不同部分分离,同 ...

  5. HTML特殊字符编码对照表(备记)

    特殊符号 命名实体 十进制编码 特殊符号 命名实体 十进制编码 特殊符号 命名实体 十进制编码 Α Α Α Β Β Β Γ Γ Γ Δ Δ Δ Ε Ε Ε Ζ Ζ Ζ Η Η Η Θ Θ Θ Ι Ι ...

  6. Excel动态图表

    动态图表其实一点都不难,真的!先看效果,然后教你一步步实现.这是每个地区经销跟代销的数据.Step 01在开发工具插入表单控件.Step 02将表单控件调整到合适的大小,并设置控件格式.Step 03 ...

  7. SoapUI之http接口测试

    SoapUI是一个开源测试工具,可以进行webservice/http协议的功能.负载.安全性测试.SoapUI pro是SoapUI的商业非开源版本,实现的功能会更多一点.一般的测试场景,用开源版本 ...

  8. 与Recommender System相关的会议及期刊

      会议 We refer specifically to ACM Recommender Systems (RecSys), established in 2007 and now the prem ...

  9. java 反射获取方法返回值类型

    //ProceedingJoinPoint pjp //获取方法返回值类型 Object[] args = pjp.getArgs(); Class<?>[] paramsCls = ne ...

  10. Base包equivalent

    Guava 18.0到22.0 Equivalence发生了较大的变化,这里我们先不可考虑Equivalence 新实现的那个接口,首先看一个测试demo: import java.util.Arra ...