思路

超级麻烦。。。

写了一堆最后常数太大T飞了。。。

真的难受

发现solve函数可以不用把下一层复制上来,直接传指针就可以,下次再说写不写叭

思路

\[ans_k=\sum_{i=1}^n\sum_{j=1}^m (a_i+b_j)^k
\]

二项式定理拆一下式子

\[\begin{align}ans_k=&\sum_{i=1}^n\sum_{j=1}^m (a_i+b_j)^k\\=&\sum_{i=1}^n\sum_{j=1}^m\sum_{t=0}^k\left(\begin{matrix}k\\t\end{matrix}\right)a_i^{k-t}b_j^t\\=&\sum_{t=0}^k\left(\begin{matrix}k\\t\end{matrix}\right)\sum_{i=1}^na_i^{k-t}\sum_{j=1}^mb_j^t\\=&k!\sum_{r=0}^k(\sum_{i=1}^n\frac{a_i^r}{r!})(\sum_{j=1}^m\frac{b_j^r}{r!})\end{align}
\]

所以只要求出\(\sum_i a_i^k\)即可

对\(a_i\),设其生成函数\(A(x)=1+a_ix+a_i^2x^2+a_i^3x^3+\dots\)

\[A_k(x)=\sum_{i=0}^{\infty}a_k^ix^i=\frac{1}{1-a_kx}
\]

最后答案的生成函数\(G(x)\)就是\(\sum_{i=0}^n A_i(x)\)

然后一个常见套路就是把\(\frac{1}{x}\)用\(\ln 'x\)代替

所以有

\[G(x)=\sum_{i=1}^n \frac{1}{1-a_ix}=\sum_{i=1}^n \ln'(1-a_ix)
\]

但是这样依然无法快速计算

我们可以再设一个\(F(x)\)

\[F(x)=\sum_{i=1}^n (\ln(1-a_ix))'=\sum_{i=1}^n\frac{-a_i}{1-a_ix}\\
G(x)=\sum_{i=1}^n \frac{1}{1-a_ix}
\]

所以\(G(x)=-xF(x)+n\)

然后对于\(F(x)\),

\[F(x)=\sum_{i=1}^n (\ln(1-a_ix))'=(\ln(\prod_{i=1}(1-a_ix)))'
\]

分治加NTT就可以在\(O(n\log^2n)\)的时间内解决

常数过大T掉的代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <assert.h>
#define int long long
using namespace std;
const int MAXN = 600000;
const int MAXL = 100100;
const int G = 3;
const int invG = 332748118;
const int MOD = 998244353; const int InputBufferSize = 67108864;//输入缓冲区大小
const int OutputBufferSize = 67108864;//输出缓冲区大小 namespace input
{
char buffer[InputBufferSize],*s,*eof;
inline void init()
{
assert(stdin!=NULL);
s=buffer;
eof=s+fread(buffer,1,InputBufferSize,stdin);
}
inline bool read(int &x)
{
x=0;
int flag=1;
while(!isdigit(*s)&&*s!='-')s++;
if(eof<=s)return false;
if(*s=='-')flag=-1,s++;
while(isdigit(*s))x=x*10+*s++-'0';
x*=flag;
return true;
}
inline bool read(char* str)
{
*str=0;
while(isspace(*s))s++;
if(eof<s)return false;
while(!isspace(*s))*str=0,*str=*s,str++,s++;
*str=0;
return true;
}
} namespace output
{
char buffer[OutputBufferSize];
char *s=buffer;
inline void flush()
{
assert(stdout!=NULL);
fwrite(buffer,1,s-buffer,stdout);
s=buffer;
fflush(stdout);
}
inline void print(const char ch)
{
if(s-buffer>OutputBufferSize-2)flush();
*s++=ch;
}
inline void print(char* str)
{
while(*str!=0)print(char(*str++));
}
inline void print(int x)
{
char buf[25]= {0},*p=buf;
if(x<0)print('-'),x=-x;
if(x==0)print('0');
while(x)*(++p)=x%10,x/=10;
while(p!=buf)print(char(*(p--)+'0'));
}
} using namespace input;
using namespace output; int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void FFT(int *a,int n,int opt,int lim){
for(int i=0;i<n;++i){
int t=0;
for(int j=0;j<lim;++j)
if((i>>j)&1)
t|=(1LL<<(lim-j-1));
if(i<t)
swap(a[i],a[t]);
}
for(int i=2;i<=n;i<<=1){
int len=i/2;
int tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<j+len;++k){
int t=(1LL*a[k+len]*arr)%MOD;
a[k+len]=(a[k]-t+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
arr=(1LL*arr*tmp)%MOD;;
}
}
}
if(!opt){
int invN=pow(n,MOD-2);
for(int i=0;i<n;++i)
a[i]=1LL*a[i]*invN%MOD;
}
}
void mul(int *a,int *bx,int &at,int bt){
static int b[MAXN];
int lim=0,num=at+bt,logt;
while((1<<lim)<=(num+2))
lim++;
logt=lim;
lim=(1<<lim);
for(int i=0;i<lim;++i)
b[i]=bx[i];
FFT(a,lim,1,logt);
FFT(b,lim,1,logt);
for(int i=0;i<lim;++i)
a[i]=(1LL*a[i]*b[i])%MOD;
FFT(a,lim,0,logt);
for(int i=num+1;i<lim;++i)
a[i]=0;
at=num;
}
void inv(int *a,int *b,int &bt,int dep,int &midlen,int &logt){
if(dep==1){
b[0]=pow(a[0],MOD-2);
bt=0;
return;
}
inv(a,b,bt,(dep+1)>>1,midlen,logt);
static int tmp1[MAXN];
for(int i=0;i<dep;++i)
tmp1[i]=a[i];
while((dep<<1)>midlen)
midlen<<=1,logt++;
for(int i=dep;i<midlen;++i)
tmp1[i]=0;
FFT(tmp1,midlen,1,logt);
FFT(b,midlen,1,logt);
for(int i=0;i<midlen;++i)
b[i]=1LL*b[i]*(2-1LL*tmp1[i]*b[i]%MOD+MOD)%MOD;
FFT(b,midlen,0,logt);
for(int i=dep;i<midlen;++i)
b[i]=0;
bt=dep-1;
}
void jf(int *a,int &at){
for(int i=at;i>=0;--i)
a[i+1]=(1LL*a[i]*pow(i+1,MOD-2))%MOD;
a[0]=0;
at++;
}
void qd(int *a,int &at){
for(int i=0;i<at;++i)
a[i]=(1LL*a[i+1]*(i+1))%MOD;
a[at]=0;
at--;
}
void ln(int *a,int *b,int at,int &bt,int n){
int midlen=1,logt=0;
inv(a,b,bt,at+1,midlen,logt);
qd(a,at);
mul(b,a,bt,at);
jf(b,bt);
for(int i=n;i<=bt;++i)
b[i]=0;
bt=n-1;
}
int val[MAXL];
int P[20][MAXN],Pt[20];
void solve(int l,int r,int dep){
if(l==r){
for(int i=2;i<=Pt[dep];++i)
P[dep][i]=0;
P[dep][0]=1;
P[dep][1]=MOD-val[l];
Pt[dep]=1;
return;
}
int mid=(l+r)>>1;
solve(l,mid,dep+1);
for(int i=0;i<=Pt[dep+1];++i)
P[dep][i]=P[dep+1][i];
for(int i=Pt[dep+1]+1;i<=Pt[dep];++i)
P[dep][i]=0;
Pt[dep]=Pt[dep+1];
solve(mid+1,r,dep+1);
mul(P[dep],P[dep+1],Pt[dep],Pt[dep+1]);
}
int jc[MAXL],jc_inv[MAXL];
int n,m,t;
void initx(void){
jc[0]=1;
int up=max(max(n,m),t)+1;
for(int i=1;i<up;++i)
jc[i]=(1LL*jc[i-1]*i)%MOD;
jc_inv[up-1]=pow(jc[up-1],MOD-2);
for(int i=up-2;i>=0;--i){
jc_inv[i]=(1LL*jc_inv[i+1]*(i+1))%MOD;
}
}
void getf(int *b,int &bt,int n){
solve(1,n,0);
int midlen=1,midlog=0;
Pt[0]=max(n+1,1LL*t+1);
inv(P[0],b,bt,Pt[0]+1,midlen,midlog);
qd(P[0],Pt[0]);
mul(b,P[0],bt,Pt[0]);
for(int i=bt;i>=0;--i)
b[i+1]=MOD-b[i];
b[0]=n;
for(int i=0;i<=bt;++i){
b[i]=(1LL*b[i]*jc_inv[i])%MOD;
}
}
int ap[MAXN],bp[MAXN];
int ax[MAXL],bx[MAXL];
signed main(){
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
// scanf("%d %d",&n,&m);
init();
read(n);
read(m);
for(int i=1;i<=n;++i)
read(ax[i]);
// scanf("%d",&ax[i]);
for(int i=1;i<=m;++i)
read(bx[i]);
// scanf("%d",&bx[i]);
// scanf("%d",&t);
read(t);
initx();
for(int i=1;i<=n;++i)
val[i]=ax[i];
int apt=0,bpt=0;
getf(ap,apt,n);
for(int i=1;i<=m;++i)
val[i]=bx[i];
getf(bp,bpt,m);
mul(ap,bp,apt,bpt);
int n_inv=pow(n,MOD-2),m_inv=pow(m,MOD-2);
for(int i=1;i<=t;++i){
print(1LL*jc[i]*ap[i]%MOD*n_inv%MOD*m_inv%MOD);
print('\n');
}
flush();
return 0;
}

P4705 玩游戏的更多相关文章

  1. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

  2. Luogu P4705 玩游戏

    题目描述 Alice 和 Bob 又在玩游戏. 对于一次游戏,首先 Alice 获得一个长度为 ​ 的序列 ​,Bob 获得一个长度为 ​ 的序列 bb.之后他们各从自己的序列里随机取出一个数,分别设 ...

  3. 洛谷P4705 玩游戏 [生成函数,NTT]

    传送门 这是两个月之前写的题,但没写博客.现在回过头来看一下发现又不会了-- 还是要写博客加深记忆. 思路 显然期望可以算出总数再乘上\((nm)^{-1}\). 那么有 \[ \begin{alig ...

  4. [洛谷P4705]玩游戏

    题目大意:对于每个$k\in[1,t]$,求:$$\dfrac{\sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k}{nm}$$$n,m,t\leqsl ...

  5. 洛谷 P4705 玩游戏

    题目分析 题目要求的是: \[ \sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)^x(x\in [1,T]) \] 利用二项式定理化式子, \[ \begin{aligned} &a ...

  6. 洛谷P4705 玩游戏(生成函数+多项式运算)

    题面 传送门 题解 妈呀这辣鸡题目调了我整整三天--最后发现竟然是因为分治\(NTT\)之后的多项式长度不是\(2\)的幂导致把多项式的值存下来的时候发生了一些玄学错误--玄学到了我\(WA\)的点全 ...

  7. 原生JS实战:写了个一边玩游戏,一边记JS的API的游戏

    本文是苏福的原创文章,转载请注明出处:苏福CNblog:http://www.cnblogs.com/susufufu/p/5878913.html 本程序[一边玩游戏,一边记JS的API]是本人的个 ...

  8. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  9. 小易邀请你玩一个数字游戏,小易给你一系列的整数。你们俩使用这些整数玩游戏。每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字。 例如: 如果{2,1,2,7}是你有的一系列数,小易说的数字是11.你可以得到方案2+2+7 = 11.如果顽皮的小易想坑你,他说的数字是6,那么你没有办法拼凑出和为6 现在小易给你n个数,让你找出无法从n个数中选取部分求和

    小易邀请你玩一个数字游戏,小易给你一系列的整数.你们俩使用这些整数玩游戏.每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字. 例如: 如果{2,1,2 ...

随机推荐

  1. mysql8.0.13免安装版的安装配置详解

    一.下载 下载地址:https://dev.mysql.com/downloads/mysql/ 二.解压到某个目录,例如:D:/mysql/mysql-8.0.13-winx64 三.配置环境变量 ...

  2. pandas(二)

    层级索引: index=[('a',2010),('b',2011),('c',2010'),('a',2012),('e',2010),('f',2011)] age=[18,17,18,16,18 ...

  3. JSTL将number类型转化为String类型

    <c:set var="lm1"> <c:out value="${lm}" /> </c:set>

  4. mysql 查询 最大值,最小值,第二大,第三大 一共四个值

    最大值:select max(num) from table 第二大值:select max(num) from tablewhere num not in(select max(num) from ...

  5. js把页面的table标签导出为csv

    // 使用该保存方法,table必须外嵌一个div且不能有任何其他元素 否则ie下载会出现其他数据 //tableid , title 为文件保存的文件名 function saveCode(tabl ...

  6. fastjson JSONObject遍历

    private static String getDesc(String jsonStr, String key) { JSONObject jsonObject = JSONObject.parse ...

  7. 使用 notify.js 桌面提醒

    //var iN = new iNotify({ // effect: 'flash', // interval: 500, // message: "有消息拉!", // aud ...

  8. [TJOI2009]猜数字

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  9. UGUI-Text——自适应

    Text组件上勾选Best Fit,当内容变多时,按原来大小装不下时,会总体缩放显示

  10. asyncio之Coroutines,Tasks and Future

    asyncio之Coroutines,Tasks and Future Coroutines and Tasks属于High-level APIs,也就是高级层的api. 本节概述用于协程和任务的高级 ...