Summary on deep learning framework --- Torch7 

2018-07-22 21:30:28

1. 尝试第一个 CNN 的 torch版本, 代码如下:

  

 --    We now have 5 steps left to do in training our first torch neural network
-- 1. Load and normalize data
-- 2. Define Neural Network
-- 3. Define Loss function
-- 4. Train network on training data
-- 5. Test network on test data. -- 1. Load and normalize data
require 'paths'
require 'image';
if (not paths.filep("cifar10torchsmall.zip")) then
os.execute('wget -c https://s3.amazonaws.com/torch7/data/cifar10torchsmall.zip')
os.execute('unzip cifar10torchsmall.zip')
end
trainset = torch.load('cifar10-train.t7')
testset = torch.load('cifar10-test.t7')
classes = {'airplane', 'automobile', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'} print(trainset)
print(#trainset.data) itorch.image(trainset.data[]) -- display the 100-th image in dataset
print(classes[trainset.label[]]) -- ignore setmetatable for now, it is a feature beyond the scope of this tutorial.
-- It sets the index operator
setmetatable(trainset,
{__index = function(t, i)
return {t.data[i], t.label[i]}
end}
);
trainset.data = trainset.data:double() -- convert the data from a ByteTensor to a DoubleTensor. function trainset:size()
return self.data:size()
end print(trainset:size())
print(trainset[])
itorch.image(trainset[][]) redChannel = trainset.data[{ {}, {}, {}, {} }] -- this pick {all images, 1st channel, all vertical pixels, all horizontal pixels}
print(#redChannel) -- TODO:fill
mean = {}
stdv = {}
for i = , do
mean[i] = trainset.data[{ {}, {i}, {}, {} }]:mean() -- mean estimation
print('Channel ' .. i .. ' , Mean: ' .. mean[i])
trainset.data[{ {}, {i}, {}, {} }]:add(-mean[i]) -- mean subtraction stdv[i] = trainset.data[ { {}, {i}, {}, {} }]:std() -- std estimation
print('Channel ' .. i .. ' , Standard Deviation: ' .. stdv[i])
trainset.data[{ {}, {i}, {}, {} }]:div(stdv[i]) -- std scaling
end -- 2. Define Neural Network
net = nn.Sequential()
net:add(nn.SpatialConvolution(, , , )) -- 3 input image channels, 6 output channels, 5x5 convolution kernel
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(,,,)) -- A max-pooling operation that looks at 2x2 windows and finds the max.
net:add(nn.SpatialConvolution(, , , ))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(,,,))
net:add(nn.View(**)) -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 16*5*5
net:add(nn.Linear(**, )) -- fully connected layer (matrix multiplication between input and weights)
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(, ))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(, )) -- 10 is the number of outputs of the network (in this case, 10 digits)
net:add(nn.LogSoftMax()) -- converts the output to a log-probability. Useful for classification problems -- 3. Let us difine the Loss function
criterion = nn.ClassNLLCriterion() -- 4. Train the neural network
trainer = nn.StochasticGradient(net, criterion)
trainer.learningRate = 0.001
trainer.maxIteration = -- just do 5 epochs of training.
trainer:train(trainset) -- 5. Test the network, print accuracy
print(classes[testset.label[]])
itorch.image(testset.data[]) testset.data = testset.data:double() -- convert from Byte tensor to Double tensor
for i=, do -- over each image channel
testset.data[{ {}, {i}, {}, {} }]:add(-mean[i]) -- mean subtraction
testset.data[{ {}, {i}, {}, {} }]:div(stdv[i]) -- std scaling
end -- for fun, print the mean and standard-deviation of example-100
horse = testset.data[]
print(horse:mean(), horse:std()) print(classes[testset.label[]])
itorch.image(testset.data[])
predicted = net:forward(testset.data[]) -- the output of the network is Log-Probabilities. To convert them to probabilities, you have to take e^x
print(predicted:exp()) for i=,predicted:size() do
print(classes[i], predicted[i])
end -- test the accuracy
correct =
for i=, do
local groundtruth = testset.label[i]
local prediction = net:forward(testset.data[i])
local confidences, indices = torch.sort(prediction, true) -- true means sort in descending order
if groundtruth == indices[] then
correct = correct +
end
end print(correct, *correct/ .. ' % ') class_performance = {, , , , , , , , , }
for i=, do
local groundtruth = testset.label[i]
local prediction = net:forward(testset.data[i])
local confidences, indices = torch.sort(prediction, true) -- true means sort in descending order
if groundtruth == indices[] then
class_performance[groundtruth] = class_performance[groundtruth] +
end
end for i=,#classes do
print(classes[i], *class_performance[i]/ .. ' %')
end require 'cunn';
net = net:cuda()
criterion = criterion:cuda()
trainset.data = trainset.data:cuda()
trainset.label = trainset.label:cuda() trainer = nn.StochasticGradient(net, criterion)
trainer.learningRate = 0.001
trainer.maxIteration = -- just do 5 epochs of training. trainer:train(trainset)

  

    那么,运行起来 却出现如下的问题:

  (1).

/home/wangxiao/torch/install/bin/luajit: ./train_network.lua:26: attempt to index global 'itorch' (a nil value)
stack traceback:
./train_network.lua:26: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: at 0x00406670
wangxiao@AHU:~/Documents/Lua test examples$

    主要是 itorch 的问题, 另外就是 要引用 require 'nn' 来解决 无法辨别 nn 的问题.

  我是把 带有 itorch 的那些行都暂时注释了.

2.  'libcudnn (R5) not found in library path.

wangxiao@AHU:~/Downloads/wide-residual-networks-master$ th ./train_Single_Multilabel_Image_Classification.lua
nil
/home/wangxiao/torch/install/bin/luajit: /home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: /home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: /home/wangxiao/torch/install/share/lua/5.1/cudnn/ffi.lua:1600: 'libcudnn (R5) not found in library path.
Please install CuDNN from https://developer.nvidia.com/cuDNN
Then make sure files named as libcudnn.so.5 or libcudnn.5.dylib are placed in your library load path (for example /usr/local/lib , or manually add a path to LD_LIBRARY_PATH)

stack traceback:
[C]: in function 'error'
/home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: in function 'require'
./train_Single_Multilabel_Image_Classification.lua:8: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: at 0x00406670
wangxiao@AHU:~/Downloads/wide-residual-networks-master$

================================================================>>

答案是:

  重新下载了 cudnn-7.5-linux-x64-v5.0-ga.tgz

  并且重新配置了,但是依然提醒这个问题,那么,问题何在呢?查看了博客:http://blog.csdn.net/hungryof/article/details/51557666 中的内容:


坑4 可能出现’libcudnn not found in library path’的情况

截取其中一段错误信息:

Please install CuDNN from https://developer.nvidia.com/cuDNN
Then make sure files named as libcudnn.so.5 or libcudnn.5.dylib are placed in your library load path (for example /usr/local/lib , or manually add a path to LD_LIBRARY_PATH)
  • 1
  • 2

LD_LIBRARY_PATH是该环境变量,主要用于指定查找共享库(动态链接库)时除了默认路径之外的其他路径。由于刚才已经将 
“libcudnn*”复制到了/usr/local/cuda-7.5/lib64/下面,因此需要

  1. sudo gedit /etc/ld.so.conf.d/cudnn.conf 就是新建一个conf文件。名字随便
  2. 加入刚才的路径/usr/local/cuda-7.5/lib64/
  3. 反正我还添加了/usr/local/cuda-7.5/include/,这个估计不要也行。
  4. 保存后,再sudo ldconfig来更新缓存。(可能会出现libcudnn.so.5不是符号连接的问题,不过无所谓了!!)

此时运行

th neural_style.lua -gpu 0 -backend cudnn
  • 1

成功了!!!!

============================================================>>>>

评价:  按照这种做法试了,确实成功了! 赞一个 !!!


  3. 利用 gm 加载图像时,提示错误,但是装上那个包仍然提示错误:

    

  

Load library:

gm = require 'graphicsmagick'

First, we provide two high-level functions to load/save directly into/form tensors:

img = gm.load('/path/to/image.png' [, type])    -- type = 'float' (default) | 'double' | 'byte'
gm.save('/path/to/image.jpg' [,quality]) -- quality = 0 to 100 (for jpegs only)

The following provide a more controlled flow for loading/saving jpegs.

Create an image, from a file:

image = gm.Image('/path/to/image.png')
-- or
image = gm.Image()
image:load('/path/to/image.png')   但是悲剧的仍然有错, 只好换了用 image.load() 的方式加载图像:
  
--To load as byte tensor for rgb imagefile
local img = image.load(imagefile,3,'byte')


 
  4. Torch 保存 txt 文件:
  -- save opt
  file = torch.DiskFile(paths.concat(opt.checkpoints_dir, opt.name, 'opt.txt'), 'w')
  file:writeObject(opt)
  file:close()
  
  5. Torch 创建新的文件夹
  opts.modelPath = opt.modelDir .. opt.modelName
  if not paths.dirp(opt.modelPath) then
    paths.mkdir(opts.modelPath)
  end   6. Torch Lua 保存 图像到文件夹
  借助 image package,首先安装: luarocks install image
  然后 require 'image'
  就可以使用了: local img = image.save('./saved_pos_neg_image/candidate_' .. tostring(i) .. tostring(j) .. '.png', pos_patch, 1, 32, 32)   7. module 'bit' not found:No LuaRocks module found for bit

wangxiao@AHU:/media/wangxiao/724eaeef-e688-4b09-9cc9-dfaca44079b2/fast-neural-style-master$ th ./train.lua
/home/wangxiao/torch/install/bin/lua: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: module 'bit' not found:No LuaRocks module found for bit
no field package.preload['bit']
no file '/home/wangxiao/.luarocks/share/lua/5.2/bit.lua'
no file '/home/wangxiao/.luarocks/share/lua/5.2/bit/init.lua'
no file '/home/wangxiao/torch/install/share/lua/5.2/bit.lua'
no file '/home/wangxiao/torch/install/share/lua/5.2/bit/init.lua'
no file '/home/wangxiao/.luarocks/share/lua/5.1/bit.lua'
no file '/home/wangxiao/.luarocks/share/lua/5.1/bit/init.lua'
no file '/home/wangxiao/torch/install/share/lua/5.1/bit.lua'
no file '/home/wangxiao/torch/install/share/lua/5.1/bit/init.lua'
no file './bit.lua'
no file '/home/wangxiao/torch/install/share/luajit-2.1.0-beta1/bit.lua'
no file '/usr/local/share/lua/5.1/bit.lua'
no file '/usr/local/share/lua/5.1/bit/init.lua'
no file '/home/wangxiao/.luarocks/lib/lua/5.2/bit.so'
no file '/home/wangxiao/torch/install/lib/lua/5.2/bit.so'
no file '/home/wangxiao/torch/install/lib/bit.so'
no file '/home/wangxiao/.luarocks/lib/lua/5.1/bit.so'
no file '/home/wangxiao/torch/install/lib/lua/5.1/bit.so'
no file './bit.so'
no file '/usr/local/lib/lua/5.1/bit.so'
no file '/usr/local/lib/lua/5.1/loadall.so'
stack traceback:
[C]: in function 'error'
/home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: in function 'require'
./train.lua:5: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: in ?
wangxiao@AHU:/media/wangxiao/724eaeef-e688-4b09-9cc9-dfaca44079b2/fast-neural-style-master$

在终端中执行:luarocks install luabitop 
就可以了。

8.  HDF5Group:read() - no such child 'media' for [HDF5Group 33554432 /]

/home/wangxiao/torch/install/bin/lua: /home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:312: HDF5Group:read() - no such child 'media' for [HDF5Group 33554432 /]
stack traceback:
[C]: in function 'error'
/home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:312: in function </home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:302>
(...tail calls...)
./fast_neural_style/DataLoader.lua:44: in function '__init'
/home/wangxiao/torch/install/share/lua/5.2/torch/init.lua:91: in function </home/wangxiao/torch/install/share/lua/5.2/torch/init.lua:87>
[C]: in function 'DataLoader'
./train.lua:138: in function 'main'
./train.lua:327: in main chunk
[C]: in function 'dofile'
...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: in ?

最近在训练 类型迁移的代码,发现这个蛋疼的问题。哎。。纠结好几天了。。这个 hdf5 到底怎么回事 ?  求解释 !!!

------------------------------------------------------------------------------------------------

  后来发现, 是我自己的数据集路径设置的有问题, 如: 应该是 CoCo/train/image/

  但是,我只是给定了 CoCo/train/ ...


  9. 怎么设置 torch代码在哪块 GPU 上运行 ? 或者 怎么设置在两块卡上同时运行 ?

  

    

  如图所示: export CUDA_VISIBLE_DEVICES=0 即可指定代码在 GPU-0 上运行. 

  


  10.  When load the pre-trained VGG model, got the following errors:

    MODULE data UNDEFINED
    warning: module 'data [type 5]' not found
    nn supports no groups!
    warning: module 'conv2 [type 4]' not found
    nn supports no groups!
    warning: module 'conv4 [type 4]' not found
    nn supports no groups!
    warning: module 'conv5 [type 4]' not found

  

 using cudnn
Successfully loaded ./feature_transfer/AlexNet_files/bvlc_alexnet.caffemodel
MODULE data UNDEFINED
warning: module 'data [type 5]' not found
nn supports no groups!
warning: module 'conv2 [type 4]' not found
nn supports no groups!
warning: module 'conv4 [type 4]' not found
nn supports no groups!
warning: module 'conv5 [type 4]' not found
 wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$ qlua ./train_match_function_alexNet_version_2017_02_28.lua
using cudnn
Successfully loaded ./feature_transfer/AlexNet_files/bvlc_alexnet.caffemodel
MODULE data UNDEFINED
warning: module 'data [type 5]' not found
nn supports no groups!
warning: module 'conv2 [type 4]' not found
nn supports no groups!
warning: module 'conv4 [type 4]' not found
nn supports no groups!
warning: module 'conv5 [type 4]' not found
conv1:
conv3:
fc6:
fc7:
fc8:
nn.Sequential {
[input -> () -> () -> () -> output]
(): nn.SplitTable
(): nn.ParallelTable {
input
|`-> (): nn.Sequential {
| [input -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> output]
| (): nn.SpatialConvolution( -> , 11x11, ,)
| (): nn.ReLU
| (): nn.SpatialCrossMapLRN
| (): nn.SpatialMaxPooling(3x3, ,)
| (): nn.ReLU
| (): nn.SpatialCrossMapLRN
| (): nn.SpatialMaxPooling(3x3, ,)
| (): nn.SpatialConvolution( -> , 3x3, ,, ,)
| (): nn.ReLU
| (): nn.ReLU
| (): nn.ReLU
| (): nn.SpatialMaxPooling(3x3, ,)
| (): nn.View(-)
| (): nn.Linear( -> )
| (): nn.ReLU
| (): nn.Dropout(0.500000)
| (): nn.Linear( -> )
| (): nn.ReLU
| }
`-> (): nn.Sequential {
[input -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> () -> output]
(): nn.SpatialConvolution( -> , 11x11, ,)
(): nn.ReLU
(): nn.SpatialCrossMapLRN
(): nn.SpatialMaxPooling(3x3, ,)
(): nn.ReLU
(): nn.SpatialCrossMapLRN
(): nn.SpatialMaxPooling(3x3, ,)
(): nn.SpatialConvolution( -> , 3x3, ,, ,)
(): nn.ReLU
(): nn.ReLU
(): nn.ReLU
(): nn.SpatialMaxPooling(3x3, ,)
(): nn.View(-)
(): nn.Linear( -> )
(): nn.ReLU
(): nn.Dropout(0.500000)
(): nn.Linear( -> )
(): nn.ReLU
}
... -> output
}
(): nn.PairwiseDistance
}
=================================================================================================================
================= AlextNet based Siamese Search for Visual Tracking ========================
=================================================================================================================
==>> The Benchmark Contain: videos ...
deal with video / video name: BlurFace ... please waiting ...
the num of gt bbox:
the num of video frames:
========>>>> Begin to track video name: nil-th frame, please waiting ...
========>>>> Begin to track video name: nil-th frame, please waiting ... ............] ETA: 0ms | Step: 0ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ............] ETA: 39s424ms | Step: 80ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ............] ETA: 33s746ms | Step: 69ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ............] ETA: 31s817ms | Step: 65ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ............] ETA: 32s575ms | Step: 66ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ............] ETA: 34s376ms | Step: 70ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ............] ETA: 40s240ms | Step: 82ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 44s211ms | Step: 91ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 45s993ms | Step: 95ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 47s754ms | Step: 99ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 50s392ms | Step: 104ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 53s138ms | Step: 110ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 55s793ms | Step: 116ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 59s253ms | Step: 123ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 1m2s | Step: 130ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 1m5s | Step: 137ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 1m8s | Step: 143ms
========>>>> Begin to track video name: nil-th frame, please waiting ... ...........] ETA: 1m11s | Step: 149ms
//////////////////////////////////////////////////////////////////////////..............] ETA: 1m14s | Step: 157ms
==>> pos_proposal_list:
==>> neg_proposal_list:
qlua: /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua::
In module of nn.Sequential:
In module of nn.ParallelTable:
In module of nn.Sequential:
/home/wangxiao/torch/install/share/lua/5.1/nn/THNN.lua:: Need input of dimension and input.size[] == but got input to be of shape: [ x x ] at /tmp/luarocks_cunn-scm--/cunn/lib/THCUNN/generic/SpatialConvolutionMM.cu:
stack traceback:
[C]: in function 'v'
/home/wangxiao/torch/install/share/lua/5.1/nn/THNN.lua:: in function 'SpatialConvolutionMM_updateOutput'
...ao/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:: in function <...ao/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:>
[C]: in function 'xpcall'
/home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:: in function 'rethrowErrors'
...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:: in function <...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:>
[C]: in function 'xpcall'
/home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:: in function 'rethrowErrors'
...angxiao/torch/install/share/lua/5.1/nn/ParallelTable.lua:: in function <...angxiao/torch/install/share/lua/5.1/nn/ParallelTable.lua:>
[C]: in function 'xpcall'
/home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:: in function 'rethrowErrors'
...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:: in function 'forward'
./train_match_function_alexNet_version_2017_02_28.lua:: in function 'opfunc'
/home/wangxiao/torch/install/share/lua/5.1/optim/adam.lua:: in function 'optim'
./train_match_function_alexNet_version_2017_02_28.lua:: in main chunk WARNING: If you see a stack trace below, it doesn't point to the place where this error occurred. Please use only the one above.
stack traceback:
[C]: at 0x7f86014df9c0
[C]: in function 'error'
/home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:: in function 'rethrowErrors'
...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:: in function 'forward'
./train_match_function_alexNet_version_2017_02_28.lua:: in function 'opfunc'
/home/wangxiao/torch/install/share/lua/5.1/optim/adam.lua:: in function 'optim'
./train_match_function_alexNet_version_2017_02_28.lua:: in main chunk
wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$

  Just like the screen shot above, change the 'nn' into 'cudnn' will be ok and passed.

  11. both (null) and torch.FloatTensor have no less-than operator

    qlua: ./test_MM_tracker_VGG_.lua:254: both (null) and torch.FloatTensor have no less-than operator
    stack traceback:
    [C]: at 0x7f628816e9c0
    [C]: in function '__lt'
    ./test_MM_tracker_VGG_.lua:254: in main chunk

  

  Because it is floatTensor () style and you can change it like this if you want this value printed in a for loop: predictValue -->> predictValue[i] .

  

  12.

========>>>> Begin to track the 6-th and the video name is ILSVRC2015_train_00109004 , please waiting ...
THCudaCheck FAIL file=/tmp/luarocks_cutorch-scm-1-707/cutorch/lib/THC/generic/THCStorage.cu line=66 error=2 : out of memory
qlua: cuda runtime error (2) : out of memory at /tmp/luarocks_cutorch-scm-1-707/cutorch/lib/THC/generic/THCStorage.cu:66
stack traceback:
[C]: at 0x7fa20a8f99c0
[C]: at 0x7fa1dddfbee0
[C]: in function 'Tensor'
./train_match_function_VGG_version_2017_03_02.lua:377: in main chunk
wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$

Yes, it is just out of memory of GPU. Just turn the batchsize to a small value, it may work. It worked for me. Ha ha ...

13. luarocks install class does not have any effect, it still shown me the error: No Module named "class" in Torch.

  ==>> in terminal, install this package in sudo.

  ==>> then, it will be OK.

14. How to install opencv 3.1 on Ubuntu 14.04 ??? 

  As we can found from: http://blog.csdn.net/a125930123/article/details/52091140

  1. first, you should install torch successfully ;

  2. then, just follow what the blog said here:

安装opencv3.1
1、安装必要的包
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
2、下载opencv3.1
http://opencv.org/downloads.html
解压:unzip opencv-3.1.0
3、安装
cd ~/opencv-3.1.0
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
sudo make -j24 
sudo make install -j24  
sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
sudo ldconfig
安装完成
4、问题
在安装过程中可能会出现无法下载 ippicv_linux_20151201.tgz的问题。
解决方案:
手动下载ippicv_linux_20151201.tgz:https://raw.githubusercontent.com/Itseez/opencv_3rdparty/81a676001ca8075ada498583e4166079e5744668/ippicv/ippicv_linux_20151201.tgz
将下载好的文件  放入 opencv-3.1.0/3rdparty/ippicv/downloads/linux-808b791a6eac9ed78d32a7666804320e 中,如果已经存在 ,则替换掉,这样就可以安装完成了。
5、最后执行命令
luarocks install cv

OpenCV bindings for Torch安装成功。

But, maybe you may found some errors, such as:

cudalegacy/src/graphcuts.cpp:120:54: error: ‘NppiGraphcutState’ has not been declared    (solution draw from: http://blog.csdn.net/allyli0022/article/details/62859290)

At this moment, you need to change some files:

found graphcuts.cpp in opencv3.1, and do the following changes:

解决方案:需要修改一处源码:
在graphcuts.cpp中将
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) 
改为
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION >= 8000) 

then, try again, it will be ok...this code just want to make opencv3.1 work under cuda 8.0, you know...skip that judge sentence...


15.  安装torch-hdf5 
sudo apt-get install libhdf5-serial-dev hdf5-tools
git clone https://github.com/deepmind/torch-hdf5
cd torch-hdf5
sudo luarocks make hdf5--.rockspec LIBHDF5_LIBDIR=”/usr/lib/x86_64-Linux-gnu/”

17. iTorch安装


git clone https://github.com/zeromq/zeromq4-1.git
mkdir build-zeromq
cd build-zeromq
cmake ..
make && make install
安装完之后,luarocks install itorch
之后可以通过luarocks list查看是否安装成功

 

Summary on deep learning framework --- Torch7的更多相关文章

  1. Summary on deep learning framework --- PyTorch

    Summary on deep learning framework --- PyTorch  Updated on 2018-07-22 21:25:42  import osos.environ[ ...

  2. Summary on deep learning framework --- Theano && Lasagne

     Summary on deep learning framework --- Theano && Lasagne 2017-03-23 1. theano.function outp ...

  3. Summary on deep learning framework --- TensorFlow

     Summary on deep learning framework --- TensorFlow Updated on 2018-07-22 21:28:11 1. Check failed: s ...

  4. Deep Learning framework --- MexNet 安装,测试,以及相关问题总结

    Deep Learning framework --- MexNet 安装,测试,以及相关问题总结  一.安装:   参考博文:http://www.open-open.com/lib/view/op ...

  5. Install and Compile MatConvNet: CNNs for MATLAB --- Deep Learning framework

    Install and Compile MatConvNet: CNNs for MATLAB --- Deep Learning framework 2017-04-18  10:19:35 If ...

  6. deep learning framework(不同的深度学习框架)

    常用的deep learning frameworks 基本转自:http://www.codeceo.com/article/10-open-source-framework.html 1. Caf ...

  7. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  8. (转) Deep Learning Resources

    转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...

  9. (转) Awesome Deep Learning

    Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...

随机推荐

  1. docker的安装和升级

    1.删除docker sudo apt-get purge docker.io sudo rm -rf /etc/docker/ sudo apt-get autoremove 2. 安装docker ...

  2. struct ifreq学习和实例

    一.struct ifreq结构体 这个结构定义在/usr/include/net/if.h,用来配置和获取ip地址,掩码,MTU等接口信息的. /* Interface request struct ...

  3. 多线程深入:synchronized(转,有删减)

    原文:https://www.cnblogs.com/hapjin/p/4678773.html synchronized 修饰方法时锁定的是调用该方法的对象.它并不能使调用该方法的多个对象在执行顺序 ...

  4. kubernetes集群应用部署实例

    今天,我们将要带来入门hello world示例,它是一个web留言板应用,基于PHP+Redis的两层分布式架构的web应用,前端PHP web网站通过访问后端Redis数据库完成用户留言的查询和添 ...

  5. 学号20175313 《Arrays和String单元测试》第八周

    目录 Arrays和String单元测试 一.String类相关方法的单元测试 二.Arrays类相关方法的单元测试 三.测试过程中遇到的问题及其解决方法 四.码云链接 五.参考资料 Arrays和S ...

  6. [SpringMVC]自定义注解实现控制器访问次数限制

    我们需要根据IP去限制用户单位时间的访问次数,防止刷手机验证码,屏蔽注册机等,使用注解就非常灵活了 1 定义注解 @Retention(RetentionPolicy.RUNTIME) @Target ...

  7. head和tail命令

    1.head head 文件名 :查看前10行 head -n 5 文件名 :查看文件的前5行 head -c 5 文件名 :查看文件的前5个字符 head -n -5 文件名   :查看文件的后5行 ...

  8. qt 画多边形(实现鼠标拖动节点)

    ---恢复内容开始--- 2018-01-06 这个小例子实现了移动鼠标,鼠标的坐标信息跟随鼠标移动,多边形的实现,鼠标点击可以拖动多边形点的位置,(其中有个问题?我在QMainWindow下,用mo ...

  9. servlet中如何实现通过Spring实现对象的注入

    @WebServlet("/BaseServlet")public class BaseServlet extends HttpServlet { private static f ...

  10. HVP plan

    HVP,hier verification plan,建立整个验证的plan,在验证后期,通过vcs的coverage db可以直接进行反标, 包括反标code coverage,function c ...