BZOJ

洛谷

UOJ

可能是退役之前最后一个BZOJ rank1了?


参考这里

如果没有减法,对一个二进制数暴力进位,均摊复杂度是\(O(1)\)的(要进\(O(n)\)次位就至少需要\(O(n)\)次操作)。

但是这题有减法...显然暴力进位就不对了。

那么我们把减法变成加法,分别维护加上的数\(inc\)和减掉的数\(dec\)是多大。查询时显然不能直接两位相减,要判断一下后面是否需要进位。

对此用\(set\)维护一下\(inc,dec\)所有不同位的位置,找到查询位后面第一个不同的位置,判一下大小关系就可以了。

关于维护进位,比较显然的是拿线段树维护每一位的情况,把\(a\times2^b\)拆成\((2^{a_1}+2^{a_2}+...)2^n\)。。这样就成两个\(\log\)了(╯‵□′)╯︵┻━┻。

注意到\(a\)不算大,而且线段树的每个位置是可以表示\(16\)或\(32\)位的。直接把\(a\)左移\(b\)位(本来就是= =),也就是把\(a\)加到\(b\)那个位置即可。如果取\(32\)位这么加一次显然是只会进位一次的(最多影响两个位置)。

(\(32\)位可以直接用unsigned int,自然溢出就可以得到加之后这几位的值,判断是否进位就判一下这个数加之前与加之后的大小关系即可)

注意到这个线段树其实没什么必要。分块,每块维护\(32\)位的值,每次只要在对应块上加,然后暴力进位即可。

复杂度\(O(n\log n)\)(set...)。

另外移位不能\(\geq\)位宽,所以移\(32\)位拆成移\(31\)位再移\(1\)位好了。。


//18148kb	3740ms
#include <set>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define pc putchar
#define gc() getchar()
#define MAXIN 300000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
typedef unsigned int uint;
const int N=1e6+5; uint inc[N],dec[N];
std::set<int> st;
char IN[MAXIN],*SS=IN,*TT=IN,OUT[N<<1],*O=OUT; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now*f;
}
void Modify(uint a,uint b,uint *A,uint *B)//a在传参前就要取abs啊(uint)
{//2^5=32
int p=b>>5,q=b&31;
uint tmp=A[p],delta=(a>>31-q)>>1; A[p]+=(a<<q);//uint
delta+=(A[p]<tmp); std::set<int>::iterator it;
if(A[p]!=B[p]) st.insert(p);
else if((it=st.find(p))!=st.end()) st.erase(it);
while(delta)
{
tmp=A[++p], A[p]+=delta, delta=A[p]<tmp;
if(A[p]!=B[p]) st.insert(p);
else if((it=st.find(p))!=st.end()) st.erase(it);
}
}
void Query()
{
int b=read(),p=b>>5,q=b&31,ans=((inc[p]^dec[p])>>q)&1;
uint v1=inc[p]&((1<<q)-1),v2=dec[p]&((1<<q)-1);//inc[p]%(2^q) 取出该块p后面的部分
if(v1<v2) *O++=((ans^1)+48);//借位
else if(v1>v2||/*st.empty()||*/*st.begin()>=p) *O++=(ans+48);
else
{
std::set<int>::iterator it=st.lower_bound(p); --it;
*O++=((inc[*it]>dec[*it]?ans:ans^1)+48);
}
*O++='\n';
} int main()
{
st.insert(N);
for(int T=read(),a=(read(),read(),read()),b; T--; )
switch(read())
{
case 1: a=read(),b=read(),Modify(a>0?a:-a,b,a>0?inc:dec,a>0?dec:inc); break;
case 2: Query();
}
fwrite(OUT,1,O-OUT,stdout); return 0;
}

BZOJ.4942.[NOI2017]整数(分块)的更多相关文章

  1. BZOJ 4942 NOI2017 整数 (压位+线段树)

    题目大意:让你维护一个数x(x位数<=3*1e7),要支持加/减a*2^b,以及查询x的第i位在二进制下是0还是1 作为一道noi的题,非常考验写代码综合能力,敲+调+借鉴神犇的代码 3个多小时 ...

  2. bzoj 4942: [Noi2017]整数

    Description Solution 加法减法可以分开考虑,如果只有加法的话,直接暴力进位复杂度是对的 询问的时候就是把两个二进制数做差,判断第 \(k\) 位的取值 实际上我们只需要判断 \(1 ...

  3. [Bzoj4942][Noi2017]整数(线段树)

    4942: [Noi2017]整数 Time Limit: 50 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 237[Submit][Status][D ...

  4. 【BZOJ4942】[NOI2017]整数(分块)

    [BZOJ4942][NOI2017]整数(分块) 题面 BZOJ 洛谷 题解 暴力就是真正的暴力,直接手动模拟进位就好了. 此时复杂度是模拟的复杂度加上单次询问的\(O(1)\). 所以我们需要优化 ...

  5. [NOI2017]整数

    [NOI2017]整数 题目大意: \(n(n\le10^6)\)次操作维护一个长度为\(30n\)的二进制整数\(x\),支持以下两种操作: 将这个整数加上\(a\cdot2^b(|a|\le10^ ...

  6. 【BZOJ4942】[Noi2017]整数 线段树+DFS(卡过)

    [BZOJ4942][Noi2017]整数 题目描述去uoj 题解:如果只有加法,那么直接暴力即可...(因为1的数量最多nlogn个) 先考虑加法,比较显然的做法就是将A二进制分解成log位,然后依 ...

  7. NOI2017整数

    NOI2017 整数 题意: ​ 让你实现两个操作: 1 \(a\) \(b\):将\(x\)加上整数\(a \cdot 2 ^ b\),其中 \(a\)为一个整数,\(b\)为一个非负整数 2 \( ...

  8. 【NOI】2017 整数(BZOJ 4942,LOJ2302) 压位+线段树

    [题目]#2302. 「NOI2017」整数 [题意]有一个整数x,一开始为0.n次操作,加上a*2^b,或询问2^k位是0或1.\(n \leq 10^6,|a| \leq 10^9,0 \leq ...

  9. BZOJ 2120: 数颜色 分块

    2120: 数颜色 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...

随机推荐

  1. Vue(小案例_vue+axios仿手机app)_上拉加载

    ---恢复内容开始--- 一.前言                                                                                    ...

  2. Git 分支 (三) 分支管理&&分支开发工作流

    分支管理 git branch 命令不只是可以创建与删除分支. 如果不加任何参数运行它,会得到当前所有分支的一个列表: 注意 master 分支前的 * 字符:它代表现在检出的那一个分支(也就是说,当 ...

  3. $\be$-QGE 的弱强唯一性

    在 [Zhao, Jihong; Liu, Qiao. Weak-strong uniqueness criterion for the $\beta$-generalized surface qua ...

  4. 深入理解 LINQ to SQL 生成的 SQL 语句

    Ø  简介 在 C# 中与数据交互最常用的语句就是 LINQ 了,而 LINQ to SQL 是最直接与数据库打交道的语句,它可以根据 LINQ 语法生成对应的 SQL 语句,在数据库中去执行.本文主 ...

  5. 实现线程安全先进先出的dict

    # encoding:utf-8 from collections import OrderedDictfrom collections import MutableMappingfrom threa ...

  6. AB PLC与西门子S7-1200以太网通信

    前言:在项目实际应用中,经常会遇到两个不同厂家的PLC需要互联进行通信交换数据,由于各自的通信协议有所不同,实现起来的难度较大,通常的做法是借助第三方的网关.本文介绍的是AB PLC与西门子S7-12 ...

  7. decltype类型指示符

    C++11新标准引入第二种类型说明符decltype,它的作用是选择并返回操作数的数据类型. 编译器分析表达式并得到它的类型,却不实际计算表达式的值: decltype(f()) sum = x;// ...

  8. DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换

    一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...

  9. webstorm javascript 分号提示如何自动补全或去掉?

    转载于: https://segmentfault.com/q/1010000006930809?_ea=1180552 如图片显示,每行末尾都会提示你加上分号,如何让IDE自动完成这个操作或者取消这 ...

  10. jdbc连接sqlserver,mysql,oracle

    class xxx{ private static String port = "1433"; private static String ip = "192.168.2 ...