原文链接https://www.cnblogs.com/zhouzhendong/p/CF1097E.html

题解

首先我们求出 $k = f(n) = \max\{x|\frac{x(x+1)}2\leq n\}$ 。

具体构造方案是:(以 $n = 15$ 为例)

11 12 13 14 15          7 8 9 10        4 5 6        2 3       1

我们考虑如何构造。

求出当前序列的 LIS 长度(假设为 $len$)。如果 $len\geq k$ ,那么直接取出这个LIS,把问题转化成更小规模的问题: $n^\prime = n-len\leq n-k$ 而且 $k^\prime \leq k-1$ 。

否则由dilworth引理得到一定可以把序列分成 $len$ 个递减序列。考虑按照以每一个点为结尾的上升序列长度将所有分组,对于同一组的按顺序连起来,这样得到 $len$ 组就好了。证明的比较简单:如果不是递减的,那么后一个的值至少是前一个+1,他们的就不会被分到同一组。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
const int N=100005;
int T,n,m;
int a[N],v[N],p[N],vis[N];
int f(int n){
int ans=0;
while (ans*(ans+1)<=n*2)
ans++;
return ans-1;
}
int c[N];
void Add(int x,int id){
for (;x<=n;x+=x&-x)
c[x]=v[c[x]]<v[id]?id:c[x];
}
int Ask(int x){
int ans=0;
for (;x;x-=x&-x)
ans=v[ans]<v[c[x]]?c[x]:ans;
return ans;
}
vector <vector <int> > ans;
vector <int> vec_empty;
void Main(){
ans.clear();
n=read();
for (int i=1;i<=n;i++)
a[i]=read();
m=n;
while (m>0){
int k=f(m);
// cout<<"k="<<k<<endl;
for (int i=0;i<=n;i++)
c[i]=0;
for (int i=1;i<=m;i++){
vis[i]=0;
p[i]=Ask(a[i]);
v[i]=v[p[i]]+1;
Add(a[i],i);
}
int tail=Ask(n),len=v[tail];
if (len>k){
ans.push_back(vec_empty);
for (int i=tail;i;i=p[i])
vis[i]=1,ans.back().push_back(a[i]);
reverse(ans.back().begin(),ans.back().end());
int _m=0;
for (int i=1;i<=m;i++)
if (!vis[i])
a[++_m]=a[i];
m=_m;
}
else {
int c=(int)ans.size()-1;
for (int i=1;i<=len;i++)
ans.push_back(vec_empty);
for (int i=1;i<=m;i++)
ans[c+v[i]].push_back(a[i]);
break;
}
}
printf("%d\n",(int)ans.size());
for (auto s : ans){
printf("%d",(int)s.size());
for (auto v : s)
printf(" %d",v);
puts("");
}
}
int main(){
T=read();
while (T--)
Main();
return 0;
}

  

Codeforces 1097E. Egor and an RPG game 构造的更多相关文章

  1. Codeforces 1097E. Egor and an RPG game

    传送门 首先考虑怎么算 $f(n)$ (就是题目里面那个 $f(n)$) 发现可以构造一组序列大概长这样: ${1,3,2,6,5,4,10,9,8,7,15,14,13,12,11,...,n(n+ ...

  2. 【CF1097E】Egor and an RPG game(动态规划,贪心)

    [CF1097E]Egor and an RPG game(动态规划,贪心) 题面 洛谷 CodeForces 给定一个长度为\(n\)的排列\(a\),定义\(f(n)\)为将一个任意一个长度为\( ...

  3. Educational Codeforces Round 7 D. Optimal Number Permutation 构造题

    D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...

  4. Codeforces Gym 100342H Problem H. Hard Test 构造题,卡迪杰斯特拉

    Problem H. Hard TestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...

  5. Codeforces 791C. Bear and Different Names 模拟构造

    C. Bear and Different Names time limit per test:1 second memory limit per test:256 megabytes input:s ...

  6. Codeforces Round #339 (Div. 1) C. Necklace 构造题

    C. Necklace 题目连接: http://www.codeforces.com/contest/613/problem/C Description Ivan wants to make a n ...

  7. Codeforces - 814B - An express train to reveries - 构造

    http://codeforces.com/problemset/problem/814/B 构造题烦死人,一开始我还记录一大堆信息来构造p数列,其实因为s数列只有两项相等,也正好缺了一项,那就把两种 ...

  8. Codeforces Gym101341I:Matrix God(随机化构造矩阵降维)***

    http://codeforces.com/gym/101341/problem/I 题意:给三个N*N的矩阵,问a*b是否等于c. 思路:之前遇到过差不多的题目,当时是随机行(点),然后验证,不满足 ...

  9. Codeforces 1163E Magical Permutation [线性基,构造]

    codeforces 思路 我顺着图论的标签点进去的,却没想到-- 可以发现排列内每一个数都是集合里的数异或出来的. 考虑答案的上界是多少.如果能用小于\(2^k\)的数构造出\([0,2^k-1]\ ...

随机推荐

  1. 基于stm32智能车的设计(ucosiii)---北京之行

    实物演示视频:https://v.youku.com/v_show/id_XMzc3MDE3NjMyNA==.html?x&sharefrom=android&sharekey=172 ...

  2. 第六十七天 js动画

    1.事件总结 鼠标事件 var box = document.querySelect('.box') // 1.点击事件 box.onclick = function(){ console.log(' ...

  3. Docker 安装应用

    Docker 安装应用 安装 odoo 10 : docker pull postgres:9.6 &&docker pull odoo:10 && docker ru ...

  4. Python【第一篇】python安装、pip基本用法、变量、输入输出、流程控制、循环

    一.python安装 Ubuntu下 系统版本已经同时安装了python2和python3 如果没有python3,可以参考这个貌似是印度阿三的安装视频:http://v.youku.com/v_sh ...

  5. Activation HDU - 4089(概率dp)

    After 4 years' waiting, the game "Chinese Paladin 5" finally comes out. Tomato is a crazy ...

  6. 求一个数组中重复数字的个数,要求复杂度为O(n)

    给出代码 #include <stdio.h> #include <unistd.h> #include <iostream> #include <memor ...

  7. Oracle 查看链接数、创建索引等的DDL语句

    select count(*),machine from v$session group by machine 今天打算将一个数据库的索引在另一个测试库上重新创建一遍,研究了一下. set pages ...

  8. JS兼容问题

    //1.滚动条到顶端的距离 var scrollTop = document.documentElement.scrollTop || document.body.scrollTop; //2.滚动条 ...

  9. Mybatis的原理与JVM内存结构(面试题)

    Mybatis的原理 1.Mapper 接口在初始SQL SessionFactory注册的 2.Mapper 接口注册在名为MapperRegistry类的 HasMap中 key=Mapper c ...

  10. 驱动调试(一)-printk

    目录 驱动调试(一)-printk 引入 框架 入口console_setup add_preferred_console register_console s3c24xx_serial_initco ...