拓扑排序(三)之 Java详解
前面分别介绍了拓扑排序的C和C++实现,本文通过Java实现拓扑排序。
目录
1. 拓扑排序介绍
2. 拓扑排序的算法图解
3. 拓扑排序的代码说明
4. 拓扑排序的完整源码和测试程序转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
拓扑排序介绍
拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而得到一个有序的线性序列。
这样说,可能理解起来比较抽象。下面通过简单的例子进行说明!
例如,一个项目包括A、B、C、D四个子部分来完成,并且A依赖于B和D,C依赖于D。现在要制定一个计划,写出A、B、C、D的执行顺序。这时,就可以利用到拓扑排序,它就是用来确定事物发生的顺序的。
在拓扑排序中,如果存在一条从顶点A到顶点B的路径,那么在排序结果中B出现在A的后面。
拓扑排序的算法图解
拓扑排序算法的基本步骤:
1. 构造一个队列Q(queue) 和 拓扑排序的结果队列T(topological);
2. 把所有没有依赖顶点的节点放入Q;
3. 当Q还有顶点的时候,执行下面步骤:
3.1 从Q中取出一个顶点n(将n从Q中删掉),并放入T(将n加入到结果集中);
3.2 对n每一个邻接点m(n是起点,m是终点);
3.2.1 去掉边<n,m>;
3.2.2 如果m没有依赖顶点,则把m放入Q;
注:顶点A没有依赖顶点,是指不存在以A为终点的边。
以上图为例,来对拓扑排序进行演示。
第1步:将B和C加入到排序结果中。
顶点B和顶点C都是没有依赖顶点,因此将C和C加入到结果集T中。假设ABCDEFG按顺序存储,因此先访问B,再访问C。访问B之后,去掉边<B,A>和<B,D>,并将A和D加入到队列Q中。同样的,去掉边<C,F>和<C,G>,并将F和G加入到Q中。
(01) 将B加入到排序结果中,然后去掉边<B,A>和<B,D>;此时,由于A和D没有依赖顶点,因此并将A和D加入到队列Q中。
(02) 将C加入到排序结果中,然后去掉边<C,F>和<C,G>;此时,由于F有依赖顶点D,G有依赖顶点A,因此不对F和G进行处理。
第2步:将A,D依次加入到排序结果中。
第1步访问之后,A,D都是没有依赖顶点的,根据存储顺序,先访问A,然后访问D。访问之后,删除顶点A和顶点D的出边。
第3步:将E,F,G依次加入到排序结果中。
因此访问顺序是:B -> C -> A -> D -> E -> F -> G
拓扑排序的代码说明
拓扑排序是对有向无向图的排序。下面以邻接表实现的有向图来对拓扑排序进行说明。
1. 基本定义
public class ListDG {
// 邻接表中表对应的链表的顶点
private class ENode {
int ivex; // 该边所指向的顶点的位置
ENode nextEdge; // 指向下一条弧的指针
}
// 邻接表中表的顶点
private class VNode {
char data; // 顶点信息
ENode firstEdge; // 指向第一条依附该顶点的弧
};
private VNode[] mVexs; // 顶点数组
...
}
(01) ListDG是邻接表对应的结构体。 mVexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。 data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。 ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的。
2. 拓扑排序
/*
* 拓扑排序
*
* 返回值:
* -1 -- 失败(由于内存不足等原因导致)
* 0 -- 成功排序,并输入结果
* 1 -- 失败(该有向图是有环的)
*/
public int topologicalSort() {
int index = 0;
int num = mVexs.size();
int[] ins; // 入度数组
char[] tops; // 拓扑排序结果数组,记录每个节点的排序后的序号。
Queue<Integer> queue; // 辅组队列
ins = new int[num];
tops = new char[num];
queue = new LinkedList<Integer>();
// 统计每个顶点的入度数
for(int i = 0; i < num; i++) {
ENode node = mVexs.get(i).firstEdge;
while (node != null) {
ins[node.ivex]++;
node = node.nextEdge;
}
}
// 将所有入度为0的顶点入队列
for(int i = 0; i < num; i ++)
if(ins[i] == 0)
queue.offer(i); // 入队列
while (!queue.isEmpty()) { // 队列非空
int j = queue.poll().intValue(); // 出队列。j是顶点的序号
tops[index++] = mVexs.get(j).data; // 将该顶点添加到tops中,tops是排序结果
ENode node = mVexs.get(j).firstEdge;// 获取以该顶点为起点的出边队列
// 将与"node"关联的节点的入度减1;
// 若减1之后,该节点的入度为0;则将该节点添加到队列中。
while(node != null) {
// 将节点(序号为node.ivex)的入度减1。
ins[node.ivex]--;
// 若节点的入度为0,则将其"入队列"
if( ins[node.ivex] == 0)
queue.offer(node.ivex); // 入队列
node = node.nextEdge;
}
}
if(index != num) {
System.out.printf("Graph has a cycle\n");
return 1;
}
// 打印拓扑排序结果
System.out.printf("== TopSort: ");
for(int i = 0; i < num; i ++)
System.out.printf("%c ", tops[i]);
System.out.printf("\n");
return 0;
}
说明:
(01) queue的作用就是用来存储没有依赖顶点的顶点。它与前面所说的Q相对应。
(02) tops的作用就是用来存储排序结果。它与前面所说的T相对应。
拓扑排序的完整源码和测试程序
拓扑排序(三)之 Java详解的更多相关文章
- 拓扑排序(二)之 C++详解
本章是通过C++实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处:http://www.cnblogs. ...
- Prim算法(三)之 Java详解
前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http:// ...
- Kruskal算法(三)之 Java详解
前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的 ...
- Floyd算法(三)之 Java详解
前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...
- 邻接表有向图(三)之 Java详解
前面分别介绍了邻接表有向图的C和C++实现,本文通过Java实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http:/ ...
- 邻接矩阵有向图(三)之 Java详解
前面分别介绍了邻接矩阵有向图的C和C++实现,本文通过Java实现邻接矩阵有向图. 目录 1. 邻接矩阵有向图的介绍 2. 邻接矩阵有向图的代码说明 3. 邻接矩阵有向图的完整源码 转载请注明出处:h ...
- 邻接表无向图(三)之 Java详解
前面分别介绍了邻接表无向图的C和C++实现,本文通过Java实现邻接表无向图. 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http:/ ...
- 邻接矩阵无向图(三)之 Java详解
前面分别介绍了邻接矩阵无向图的C和C++实现,本文通过Java实现邻接矩阵无向图. 目录 1. 邻接矩阵无向图的介绍 2. 邻接矩阵无向图的代码说明 3. 邻接矩阵无向图的完整源码 转载请注明出处:h ...
- 哈夫曼树(三)之 Java详解
前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...
随机推荐
- NPIO 导出记录
http://www.cnblogs.com/qingyuan/archive/2012/11/08/2760034.html http://www.cnblogs.com/gaoshuai/arch ...
- 第59讲:Scala中隐式转换初体验
今天学习了下隐式转换的内容.所谓隐式转换,就是说,一个实例拥用1 2 3方法,但是当它需要4方法的时候,它没有,但是却可以通过转换成另一种类型来调用4方法,而且这种转换是自动转换不需要人为干预的,这种 ...
- CreateCompatibleDC 与 CreateCompatibleBitmap 小小结
通常使用CreateCompatibleBitmap时候都会用到CreateCompatibleDC.而是用CreateCompatibleDC的目的不是为CreateCompatibleBitmap ...
- java-内省与javabean
JavaBean 是一种JAVA语言写成的可重用组件.为写成JavaBean,类必须是具体的和公共的,并且具有无参数的构造器.JavaBean 通过提供符合一致性设计模式的公共方法将内部域暴露成员属性 ...
- CUTE-WRV2.1+TCP core(COM5402)的TCP带宽测试
问题的提出 测试TCP的带宽,硬件平台CUTE-WRV2.1,固件版本WRPCV3.0+COM5402. 代码.工具及实现 1. 在固件中,增加模块,收到TCP数据包后不断地往外发数: library ...
- 安装RPM包或者安装源码包
本系列的博客来自于:http://www.92csz.com/study/linux/ 在此,感谢原作者提供的入门知识 这个系列的博客的目的在于将比较常用的liunx命令从作者的文章中摘录下来,供自己 ...
- Android 客户端设计之解决方案
解决方案,是正对与需求来谈的.一个抽象的需求,需要一个较为上层抽象的解决方案来处理,这是病和药的关系.但是一个解决方案,可能会包含多个功能,每个功能都是解决方案上的一个节点.一个优秀的解决方案必然需要 ...
- PAT/简单模拟习题集(一)
B1001.害死人不偿命的(3n+1)猜想 (15) Description: 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉 ...
- 阿里云Linux安装软件镜像源
阿里云Linux安装软件镜像源 阿里云是最近新出的一个镜像源.得益与阿里云的高速发展,这么大的需求,肯定会推出自己的镜像源.阿里云Linux安装镜像源地址:http://mirrors.aliyun. ...
- 依赖注入的威力,.NET Core的魅力:解决MVC视图中的中文被html编码的问题
有园友在博问中提了这样一个问题 —— .NET Core 中文等非英文文字html编码输出问题,到我们的 ASP.NET Core 项目中一看,也是同样的问题. 比如下面的Razor视图代码: @{ ...