题目:这里

题意:

Description

  每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。

Input

  第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)

Output

  一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000

我是看了强连通入门(讲的很清楚):http://www.2cto.com/kf/201606/517227.html

Kosaraju算法第一次dfs1将所有的点按拓扑排序逆序存进栈,第二次dfs2(此时是逆着方向回去搜)将整个图分成若干个强连通分量,。

对于这个题,可以观察出最后受到所有牛的欢迎的牛必定是在其中一个强连通分量里面的,所以看哪个强连通分量是其余所有变量都能达到的,也就等同于缩点后的

新图里面哪个的出度为0,如果出度为0的分量只有一个,那么该分量其中点的个数就是答案,如果出度为0的分量个数超过一个,那么没有答案,输出为0.

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<cmath>
using namespace std; const int M = 1e5 + ;
vector<int>q;
int sccno[M],sum[M],du[M],scc_cnt; struct Edge{
int to,next,from,odr;
}edge[M*];
int head1[M],head2[M],cas;
bool vis[M]; void add(int u,int v)
{
edge[++cas].next=head1[u];
edge[cas].odr=head2[v];
edge[cas].to=v;edge[cas].from=u;
head1[u]=cas;head2[v]=cas;
} void dfs1(int u)
{
for (int i=head1[u] ; i ; i=edge[i].next){
int v=edge[i].to;
if (vis[v]) continue;
vis[v]=true;
dfs1(v);
q.push_back(v);
}
} void dfs2(int u)
{
sccno[u]=scc_cnt;
sum[scc_cnt]++;
for (int i=head2[u] ; i ; i=edge[i].odr){
int v=edge[i].from;
if (sccno[v]) continue;
dfs2(v);
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
scc_cnt=;cas=;
q.clear();
while (m--){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
memset(vis,false,sizeof(vis));
memset(sum,,sizeof(sum));
memset(du,,sizeof(du));
for (int i= ; i<=n ; i++)
if (vis[i]==false){
vis[i]=true;dfs1(i);
q.push_back(i);
} for (int i=n- ; i>= ; i--){
if (!sccno[q[i]]){
scc_cnt++;
// cout<<q[i]<<endl;
dfs2(q[i]);
}
} for (int i= ; i<=cas ; i++){
int x=sccno[edge[i].from],y=sccno[edge[i].to];
if (x==y) continue;
du[x]++;
}
int flag=-,ans;
for (int i= ; i<=scc_cnt ; i++)
if (!du[i]) flag++,ans=sum[i];
if (flag==) printf("%d\n",ans);
else puts("");
return ;
}

Tarjan算法链接也就讲的很清楚了

 #include<cstdio>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std; const int M = 1e5 + ;
int head[M],cas,scc_cnt,dfs_clock;
int sccno[M],du[M],sum[M],lowlink[M],pre[M];
stack<int>s; int min(int x,int y){return x<y?x:y;} struct Edge{
int to,next,from;
}edge[M*]; void add(int u,int v)
{
edge[++cas].next=head[u];
edge[cas].to=v;edge[cas].from=u;
head[u]=cas;
} void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
s.push(u);
for (int i=head[u] ; i ; i=edge[i].next){
int v=edge[i].to;
if (!pre[v]){
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if (!sccno[v]){
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if (lowlink[u]==pre[u]){
scc_cnt++;
for ( ; ; ){
int x=s.top();s.pop();
sccno[x]=scc_cnt;
if (x==u) break;
}
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
cas=,dfs_clock=,scc_cnt=;
while (m--){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
memset(pre,,sizeof(pre));
memset(lowlink,,sizeof(lowlink));
memset(du,,sizeof(du));
memset(sum,,sizeof(sum));
for (int i= ; i<=n ; i++)
if (!pre[i]) dfs(i);
for (int i= ; i<=n ; i++)
sum[sccno[i]]++;
for (int i= ; i<=cas ; i++){
int u=sccno[edge[i].from],v=sccno[edge[i].to];
if (u==v) continue;
du[u]++;
}
int flag=,ans;
for (int i= ; i<=scc_cnt ; i++)
if (!du[i]) flag++,ans=sum[i];
if (flag==) printf("%d\n",ans);
else puts("");
return ;
}

bzoj 1051 (强连通) 受欢迎的牛的更多相关文章

  1. BZOJ 1051: [HAOI2006]受欢迎的牛( tarjan )

    tarjan缩点后, 有且仅有一个出度为0的强连通分量即answer, 否则无解 ----------------------------------------------------------- ...

  2. BZOJ 1051: [HAOI2006]受欢迎的牛(SCC)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 8172  Solved: 4470[Submit][Sta ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. BZOJ 1051: [HAOI2006]受欢迎的牛 缩点

    1051: [HAOI2006]受欢迎的牛 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1051: [HAOI2006]受欢迎的牛 tarjan缩点

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2092  Solved: 1096[Submit][Sta ...

  6. BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问 ...

  7. 洛谷 P2341 BZOJ 1051 [HAOI2006]受欢迎的牛

    题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...

  8. BZOJ 1051: [HAOI2006]受欢迎的牛

    Description 一个有向图,求所以能被别的点到达的点的个数. Sol Tarjan + 强连通分量 + 缩点. 缩点以后找强连通分量,缩点,然后当图有且仅有1个出度为1的点时,有答案. Cod ...

  9. bzoj 1051 [HAOI2006]受欢迎的牛(tarjan缩点)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1051 题解:缩点之后判断出度为0的有几个,只有一个那么输出那个强连通块的点数,否者 ...

随机推荐

  1. jsp+tomcat+mysql+sevlet+javabean配置过程

    在配置jsp开发环境的过程中会碰到不少问题,感谢网上的许多前辈的经验总结,作者cl41的JSP连接Mysql数据库攻略和作者Saulzy的MySQL学习笔记等文章对我来说简直是雪中送碳,为了帮助象我一 ...

  2. CMakeLists.txt for nginx

    project(nginx) cmake_minimum_required(VERSION 2.8) aux_source_directory(. SRC_LIST) aux_source_direc ...

  3. Android中editText使用报错

    在activity_main.xml文件中添加了editText控件 <EditText        android:id="@+id/edit_text"        ...

  4. python 常用高效代码写法集锦

    一.打开文件 #使用 with 语句操作文件对象 with open(r'somefileName') as somefile: for line in somefile: print line # ...

  5. 转载:Scalers:要持续行动,不要自我感动

    转载自微信公众号:http://mp.weixin.qq.com/s?__biz=MzA4MjIyNDYzMQ==&mid=2650846277&idx=1&sn=5d832a ...

  6. 锋利的js前端分页之jQuery

    大家在作分页时,多数是在后台返回一个导航条的html字符串,其实在前端用js也很好实现. 调用pager方法,输入参数,会返回一个导航条的html字符串.方法的内部比较简单. /** * pageSi ...

  7. Winform API "user32.dll"中的函数

    命名空间:System.Runtime.InteropServices /// <summary> /// 该函数检索一指定窗口的客户区域或整个屏幕的显示设备上下文环境的句柄,以后可以在G ...

  8. Arcgis Server发布服务

    提到Arcgis Server 服务的发布,做起来貌似很简单,就算电脑再卡,只要鼠标还能点,一个小时肯定能搞定,但是当你遇到问题的时候,就头大了,也许搞上个一两天都摸不着头脑,最后你采取的措施可能是一 ...

  9. 如何在EF CodeFirst中使用唯一约束(Unique)

    一直用EF Fluent Api 做MapConfiguration 所以遇到了唯一约束这个瓶颈 使用唯一约束的两种方式: 方式1 自定义唯一约束 [AttributeUsage(AttributeT ...

  10. mac下webpagetest搭建

    我的server和agent都是在mac上搭建的,所以会和linux下有些不同   一.安装配置Apache和PHP webpagetest需要使用PHP和Apache启动服务.mac默认安装了Apa ...