题目:这里

题意:

Description

  每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。

Input

  第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)

Output

  一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000

我是看了强连通入门(讲的很清楚):http://www.2cto.com/kf/201606/517227.html

Kosaraju算法第一次dfs1将所有的点按拓扑排序逆序存进栈,第二次dfs2(此时是逆着方向回去搜)将整个图分成若干个强连通分量,。

对于这个题,可以观察出最后受到所有牛的欢迎的牛必定是在其中一个强连通分量里面的,所以看哪个强连通分量是其余所有变量都能达到的,也就等同于缩点后的

新图里面哪个的出度为0,如果出度为0的分量只有一个,那么该分量其中点的个数就是答案,如果出度为0的分量个数超过一个,那么没有答案,输出为0.

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<cmath>
using namespace std; const int M = 1e5 + ;
vector<int>q;
int sccno[M],sum[M],du[M],scc_cnt; struct Edge{
int to,next,from,odr;
}edge[M*];
int head1[M],head2[M],cas;
bool vis[M]; void add(int u,int v)
{
edge[++cas].next=head1[u];
edge[cas].odr=head2[v];
edge[cas].to=v;edge[cas].from=u;
head1[u]=cas;head2[v]=cas;
} void dfs1(int u)
{
for (int i=head1[u] ; i ; i=edge[i].next){
int v=edge[i].to;
if (vis[v]) continue;
vis[v]=true;
dfs1(v);
q.push_back(v);
}
} void dfs2(int u)
{
sccno[u]=scc_cnt;
sum[scc_cnt]++;
for (int i=head2[u] ; i ; i=edge[i].odr){
int v=edge[i].from;
if (sccno[v]) continue;
dfs2(v);
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
scc_cnt=;cas=;
q.clear();
while (m--){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
memset(vis,false,sizeof(vis));
memset(sum,,sizeof(sum));
memset(du,,sizeof(du));
for (int i= ; i<=n ; i++)
if (vis[i]==false){
vis[i]=true;dfs1(i);
q.push_back(i);
} for (int i=n- ; i>= ; i--){
if (!sccno[q[i]]){
scc_cnt++;
// cout<<q[i]<<endl;
dfs2(q[i]);
}
} for (int i= ; i<=cas ; i++){
int x=sccno[edge[i].from],y=sccno[edge[i].to];
if (x==y) continue;
du[x]++;
}
int flag=-,ans;
for (int i= ; i<=scc_cnt ; i++)
if (!du[i]) flag++,ans=sum[i];
if (flag==) printf("%d\n",ans);
else puts("");
return ;
}

Tarjan算法链接也就讲的很清楚了

 #include<cstdio>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std; const int M = 1e5 + ;
int head[M],cas,scc_cnt,dfs_clock;
int sccno[M],du[M],sum[M],lowlink[M],pre[M];
stack<int>s; int min(int x,int y){return x<y?x:y;} struct Edge{
int to,next,from;
}edge[M*]; void add(int u,int v)
{
edge[++cas].next=head[u];
edge[cas].to=v;edge[cas].from=u;
head[u]=cas;
} void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
s.push(u);
for (int i=head[u] ; i ; i=edge[i].next){
int v=edge[i].to;
if (!pre[v]){
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if (!sccno[v]){
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if (lowlink[u]==pre[u]){
scc_cnt++;
for ( ; ; ){
int x=s.top();s.pop();
sccno[x]=scc_cnt;
if (x==u) break;
}
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
cas=,dfs_clock=,scc_cnt=;
while (m--){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
memset(pre,,sizeof(pre));
memset(lowlink,,sizeof(lowlink));
memset(du,,sizeof(du));
memset(sum,,sizeof(sum));
for (int i= ; i<=n ; i++)
if (!pre[i]) dfs(i);
for (int i= ; i<=n ; i++)
sum[sccno[i]]++;
for (int i= ; i<=cas ; i++){
int u=sccno[edge[i].from],v=sccno[edge[i].to];
if (u==v) continue;
du[u]++;
}
int flag=,ans;
for (int i= ; i<=scc_cnt ; i++)
if (!du[i]) flag++,ans=sum[i];
if (flag==) printf("%d\n",ans);
else puts("");
return ;
}

bzoj 1051 (强连通) 受欢迎的牛的更多相关文章

  1. BZOJ 1051: [HAOI2006]受欢迎的牛( tarjan )

    tarjan缩点后, 有且仅有一个出度为0的强连通分量即answer, 否则无解 ----------------------------------------------------------- ...

  2. BZOJ 1051: [HAOI2006]受欢迎的牛(SCC)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 8172  Solved: 4470[Submit][Sta ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. BZOJ 1051: [HAOI2006]受欢迎的牛 缩点

    1051: [HAOI2006]受欢迎的牛 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1051: [HAOI2006]受欢迎的牛 tarjan缩点

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2092  Solved: 1096[Submit][Sta ...

  6. BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问 ...

  7. 洛谷 P2341 BZOJ 1051 [HAOI2006]受欢迎的牛

    题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...

  8. BZOJ 1051: [HAOI2006]受欢迎的牛

    Description 一个有向图,求所以能被别的点到达的点的个数. Sol Tarjan + 强连通分量 + 缩点. 缩点以后找强连通分量,缩点,然后当图有且仅有1个出度为1的点时,有答案. Cod ...

  9. bzoj 1051 [HAOI2006]受欢迎的牛(tarjan缩点)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1051 题解:缩点之后判断出度为0的有几个,只有一个那么输出那个强连通块的点数,否者 ...

随机推荐

  1. jQuery on 绑定的事件触发多次

    jquery用on绑定事件,在代码执行过程中,可能会遇到多次执行的情况. 解决方案是在on的事件前面加上一个off,再on. $('#btnBind').off('click').on('click' ...

  2. 利用IDL将一个txt文档拆分为多个

    测试.txt文档,每47行的格式相同,通过代码每47行存为一个txt,txt文档命名为其第一行数据. 代码如下: file='G:\data\测试.txt' openr,lun,file,/Get_L ...

  3. java 静态代码块 构造块 构造方法

    class className{ static{ }//静态代码块 { }//构造代码块 public className(){} //构造方法 }

  4. Python字符串的encode与decode研究心得乱码问题解决方法

    为什么Python使用过程中会出现各式各样的乱码问题,明明是中文字符却显示成“\xe4\xb8\xad\xe6\x96\x87”的形式? 为什么会报错“UnicodeEncodeError: 'asc ...

  5. C语言中内存操作函数

      一.malloc/calloc 名称: Malloc/calloc 功能: 动态内存分配函数 头文件: #include <stdlib.h> 函数原形: void *malloc(s ...

  6. 把内容生成txt文件

    StringBuilder MailLog = new StringBuilder();            string logPath = txtFile + str + DateTime.No ...

  7. 常用的CentOS 7系统yum源集合

    常用的CentOS 7系统yum源集合   yum源对于linux系统的安装有非常大的帮助了,下面小编为各位整理了常用的CentOS 7系统yum源集合了,希望这篇文章能够对各位有所帮助的哦.   记 ...

  8. 《全唐诗》的sqlite3数据库

    下载地址: http://pan.baidu.com/s/1b2mE54quantangshi.db是sqlite3数据库,包括2张表.index表:volume 列(整数,主键) 表示卷号,从1到9 ...

  9. 需要交互的shell编程——EOF(转载)

    在shell编程中,”EOF“通常与”<<“结合使用,“<<EOF“表示后续的输入作为子命令或子shell的输入,直到遇到”EOF“, 再次返回到主调shell,可将其理解为分 ...

  10. SOME:收缩数据库日志文件,查看表数据量和空间占用,查看表结构索引修改时间

    ---收缩数据库日志文件 USE [master]ALTER DATABASE yourdatabasename SET RECOVERY SIMPLE WITH NO_WAITALTER DATAB ...