Longest Increasing Subsequence
很久不写算法了== 写个东西练练手
最长上升子序列
输入n,然后是数组a[ ]的n个元素
输出最长上升子序列的长度
一、最简单的方法复杂度O(n * n)
- DP[ i ] 是以a[ i ] 为结尾的最长上升子序列的长度。
- DP[ i ] = max{DP[ j ] + 1 | j < i && a[ j ] < a[ i ]}
代码:
/* * ===================================================================================== * Filename : LongestIncrSub1.cpp * Description : O(n^2) * Version : a better Algorithm of O(n^2) * Created : 03/22/14 22:03 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <climits> #include <cstdlib> ; int dp[MAXN], a[MAXN]; int n, i, j; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { ; i < n; ++i ) { scanf ( "%d", &a[i] ); dp[i] = INT_MAX; } ; i < n; ++i ) { ; j < n; ++j ) { || dp[j-] < a[i] ) { if ( dp[j] > a[i] ) { dp[j] = a[i]; } } } } ; ; j >= ; --j ) { if ( dp[j] != INT_MAX ) { result = j + ; break; } } printf ( "%d\n", result ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
二、因为长度相同的几个不同的子序列中,最末位数字最小的在之后比较有优势,所以用DP针对这个最小的末尾元素求解。
DP[ i ] 表示长度为 i + 1的上升子序列中末尾元素的最小值
从前往后扫描数组a[ ],对于每一个元素a[ i ],只需要在DP[ ] 数组中找到应该插入的位置。
if j == 0 || a[ i ] > DP[ j-1 ]
DP[ j ] = min{ DP[ j ], a[ i ]}
由于对于每个a[ i ] 都要扫描一遍DP[ ] 数组,所以复杂度还是O(n * n)
代码:
/* * ===================================================================================== * Filename : LongestIncrSub1.cpp * Description : O(n^2) * Version : a better Algorithm of O(n^2) * Created : 03/22/14 22:03 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <climits> #include <cstdlib> ; int dp[MAXN], a[MAXN]; int n, i, j; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { ; i < n; ++i ) { scanf ( "%d", &a[i] ); dp[i] = INT_MAX; } ; i < n; ++i ) { ; j < n; ++j ) { || dp[j-] < a[i] ) { if ( dp[j] > a[i] ) { dp[j] = a[i]; } } } } ; ; j >= ; --j ) { if ( dp[j] != INT_MAX ) { result = j + ; break; } } printf ( "%d\n", result ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
三、对于上一个算法,在DP[ ]数组中找a[ i ]元素的插入位置的时候,采用的是线性查找,由于DP[ ]这个数组是有序的,所以可以采用二分,这要复杂度就降到了O(nlogn),可以用STL函数lower_bound用来找第一个大于等于a[ i ]的位置。
代码:
/* * ===================================================================================== * Filename : LongestIncrSub2.cpp * Description : A better solution * Version : algorithm of O(nlogn) * Created : 03/22/14 22:37 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <cstdlib> #include <climits> #include <algorithm> using namespace std; ; int a[MAXN], dp[MAXN]; int i, n, result; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { fill(dp, dp + n, INT_MAX); ; i < n; ++i ) { scanf ( "%d", &a[i] ); } ; i < n; ++i ) { *lower_bound(dp, dp + n, a[i]) = a[i]; } result = lower_bound(dp, dp + n, INT_MAX) - dp; printf ( "%d\n", result ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
Source Code on GitHub
四、如何打印出最长上升子序列呢?
用一个position数组,position[ i ] 表示位置 i 的数字在上升子序列中的位置。也就是,插入dp数组中的位置。
比如
然后在position数组中从后往前找到第一次出现的3对应的a[ i ] = 8,然后接着找第一次出现的2对应的a[ i ] = 3,然后接着找第一次出现的1对应的a[ i ] = 2,最后接着
找第一次出现的0对应的a[ i ] = -7
所以,-7, 2, 3, 8就是最长上升子序列的一个解。这个解是在序列中最后出现的。
代码:
/* * ===================================================================================== * Filename : LongestIncrSub2.cpp * Description : A better solution * Version : algorithm of O(nlogn) * Created : 03/22/14 22:37 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <cstdlib> #include <climits> #include <algorithm> using namespace std; ; int a[MAXN], dp[MAXN], position[MAXN], sub[MAXN]; int i, n, result; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE // freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { fill(dp, dp + n, INT_MAX); ; i < n; ++i ) { scanf ( "%d", &a[i] ); } int *tmp; ; i < n; ++i ) { tmp = lower_bound(dp, dp + n, a[i]); position[i] = tmp - dp; *tmp = a[i]; } result = lower_bound(dp, dp + n, INT_MAX) - dp; printf ( "%d\n", result ); ; ; i >= ; --i ) { if ( t == position[i] ) { sub[t] = a[i]; --t; } } ; i < result; ++i ) { if ( i ) { printf ( " " ); } printf ( "%d", sub[i] ); } printf ( "\n" ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
所有的代码在git里面
Longest Increasing Subsequence的更多相关文章
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [LeetCode] Longest Increasing Subsequence
Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...
- The Longest Increasing Subsequence (LIS)
传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
- leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)
https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...
- [Leetcode] Binary search, DP--300. Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
随机推荐
- 静态绑定网关,防止ARP攻击
Windows XP 下 写个批处理文件:内容如下,名称自取 @echo offard -darp -s 192.168.1.1 00-14-78-ef-10-45//绑定IP地址 WIN 7 下 1 ...
- solaris tar 命令exclude使用
压缩时需要排除指定目录,不知道什么原因在solaris中 tar cvf a.tar a --exclude=a/b/log --exclude = a/c/mm7log不生效, 最后使用了如下方法 ...
- jacon
com的线程回收不由java垃圾回收器进行处理,因此,每new一次jacob提供的类就要分配一定大小的内存给该操作,new出来的这个com对象在使用结束之后产生的垃圾java是无法回收的,new出来的 ...
- Perl技巧
项目里面一直用的是Perl,Perl里有各种小技巧就分享在这吧. push(@a, $b) 把b元素压入a数组中, 还可以有 push(@a, [@b]); 那a就成了二维数组了 scalar(@a) ...
- ios之JavaScript
初次接触java脚本,感觉java脚本so interesting!为什么呢?写javascript代码感觉就像是在记流水账,无拐弯抹角,一个字,就是"干",想怎么干就怎么干,哈哈 ...
- loadrunner四大部分
loadrunner主要分一下四部分 1.VuGen 主要进行录制,回放,参数化,脚本修改,可以对脚本进行recording options,General options,runtime opti ...
- Spring中的SPEL
src\dayday\Person.java package dayday;/** * Created by I am master on 2016/11/28. */public class Per ...
- 题目1203:IP地址
题目: http://ac.jobdu.com/problem.php?pid=1203 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3052 解决:1504 题目描述: 输入一个ip地 ...
- 【Windows】为节省系统资源,停掉不必要的服务
1.windows服务名称(注册表名称)和显示名称对照表如下: < 显示名称 状态 服务名称 Application Management demand AppMgmt ASP.NET Stat ...
- 【转】Duff's Device
在看strcpy.memcpy等的实现发现用了内存对齐,每一个word拷贝一次的办法大大提高了实现效率,参加该blog(http://totoxian.iteye.com/blog/1220273). ...