很久不写算法了== 写个东西练练手

最长上升子序列

输入n,然后是数组a[ ]的n个元素

输出最长上升子序列的长度

一、最简单的方法复杂度O(n * n)

  1. DP[ i ] 是以a[ i ] 为结尾的最长上升子序列的长度。
  2. DP[ i ] = max{DP[ j ] + 1 | j < i && a[ j ] < a[ i ]}

代码:

 /*
  * =====================================================================================
  *       Filename : LongestIncrSub1.cpp
  *    Description : O(n^2)
  *    Version     : a better Algorithm of O(n^2)
  *        Created : 03/22/14 22:03
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <climits>
 #include <cstdlib>

 ;
 int dp[MAXN], a[MAXN];
 int n, i, j;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
     freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */

     while ( ~scanf("%d", &n) ) {

         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
             dp[i] = INT_MAX;
         }
         ; i < n; ++i ) {
             ; j < n; ++j ) {
                  || dp[j-] < a[i] ) {
                     if ( dp[j] > a[i] ) {
                         dp[j] = a[i];
                     }
                 }
             }
         }
         ;
         ; j >= ; --j ) {
             if ( dp[j] != INT_MAX ) {
                 result = j + ;
                 break;
             }
         }
         printf ( "%d\n", result );
     }
         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

二、因为长度相同的几个不同的子序列中,最末位数字最小的在之后比较有优势,所以用DP针对这个最小的末尾元素求解。

DP[ i ] 表示长度为 i + 1的上升子序列中末尾元素的最小值

从前往后扫描数组a[ ],对于每一个元素a[ i ],只需要在DP[ ] 数组中找到应该插入的位置。

if j == 0 || a[ i ] > DP[ j-1 ]

  DP[ j ] = min{ DP[ j ], a[ i ]}

由于对于每个a[ i ] 都要扫描一遍DP[ ] 数组,所以复杂度还是O(n * n)

代码:

 /*
  * =====================================================================================
  *       Filename : LongestIncrSub1.cpp
  *    Description : O(n^2)
  *    Version     : a better Algorithm of O(n^2)
  *        Created : 03/22/14 22:03
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <climits>
 #include <cstdlib>

 ;
 int dp[MAXN], a[MAXN];
 int n, i, j;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
     freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */

     while ( ~scanf("%d", &n) ) {

         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
             dp[i] = INT_MAX;
         }
         ; i < n; ++i ) {
             ; j < n; ++j ) {
                  || dp[j-] < a[i] ) {
                     if ( dp[j] > a[i] ) {
                         dp[j] = a[i];
                     }
                 }
             }
         }
         ;
         ; j >= ; --j ) {
             if ( dp[j] != INT_MAX ) {
                 result = j + ;
                 break;
             }
         }
         printf ( "%d\n", result );
     }
         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

三、对于上一个算法,在DP[ ]数组中找a[ i ]元素的插入位置的时候,采用的是线性查找,由于DP[ ]这个数组是有序的,所以可以采用二分,这要复杂度就降到了O(nlogn),可以用STL函数lower_bound用来找第一个大于等于a[ i ]的位置。

代码:

 /*
  * =====================================================================================
  *       Filename : LongestIncrSub2.cpp
  *    Description : A better solution
  *    Version     : algorithm of O(nlogn)
  *        Created : 03/22/14 22:37
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <cstdlib>
 #include <climits>
 #include <algorithm>
 using namespace std;

 ;
 int a[MAXN], dp[MAXN];
 int i, n, result;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
     freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */
     while ( ~scanf("%d", &n) ) {
         fill(dp, dp + n, INT_MAX);
         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
         }
         ; i < n; ++i ) {
             *lower_bound(dp, dp + n, a[i]) = a[i];
         }
         result = lower_bound(dp, dp + n, INT_MAX) - dp;
         printf ( "%d\n", result );
     }

         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

Source Code on GitHub

四、如何打印出最长上升子序列呢?

用一个position数组,position[ i ] 表示位置 i 的数字在上升子序列中的位置。也就是,插入dp数组中的位置。

比如

然后在position数组中从后往前找到第一次出现的3对应的a[ i ] = 8,然后接着找第一次出现的2对应的a[ i ] = 3,然后接着找第一次出现的1对应的a[ i ] = 2,最后接着

找第一次出现的0对应的a[ i ] = -7

所以,-7, 2, 3, 8就是最长上升子序列的一个解。这个解是在序列中最后出现的。

代码:

  /*
  * =====================================================================================
  *       Filename : LongestIncrSub2.cpp
  *    Description : A better solution
  *    Version     : algorithm of O(nlogn)
  *        Created : 03/22/14 22:37
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <cstdlib>
 #include <climits>
 #include <algorithm>
 using namespace std;

 ;
 int a[MAXN], dp[MAXN], position[MAXN], sub[MAXN];
 int i, n, result;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
 //    freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */
     while ( ~scanf("%d", &n) ) {
         fill(dp, dp + n, INT_MAX);
         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
         }
         int *tmp;
         ; i < n; ++i ) {
             tmp = lower_bound(dp, dp + n, a[i]);
             position[i] = tmp - dp;
             *tmp = a[i];
         }
         result = lower_bound(dp, dp + n, INT_MAX) - dp;
         printf ( "%d\n", result );
         ;
         ; i >= ; --i ) {
             if ( t == position[i] ) {
                 sub[t] = a[i];
                 --t;
             }
         }
         ; i < result; ++i ) {
             if ( i ) {
                 printf ( " " );
             }
             printf ( "%d", sub[i] );
         }
         printf ( "\n" );
     }

         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

所有的代码在git里面

Longest Increasing Subsequence的更多相关文章

  1. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  2. [tem]Longest Increasing Subsequence(LIS)

    Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...

  3. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  4. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  5. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

  6. The Longest Increasing Subsequence (LIS)

    传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...

  7. 300. Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...

  8. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  9. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  10. [Leetcode] Binary search, DP--300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

随机推荐

  1. SQL数据库,使用事务执行增删改操作,给自己一个后悔的机会

    内容并不复杂,使用起来也比较简单. 主要使用以下3条SQL语句: 开始事物:BEGIN TRAN(全拼 TRANSACTION 亦可)提交事物:COMMIT TRAN回滚事务:ROLLBACK TRA ...

  2. #1000 A + B (hihoCoder)

    时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 求两个整数A+B的和 输入 输入包含多组数据.每组数据包含两个整数A(1 ≤ A ≤ 100)和B(1 ≤ A ≤ 100) ...

  3. JavaScript贷款计算器

    今天花了两个小时模仿书上代码用JS制作了JavaScript贷款计算器,时间有些长,但相比以前,自己细心了不少,每天进步一点点,量的积累达到质的飞跃 <!doctype html>< ...

  4. JAVA 中文转GBK内码方法

    不能谷歌,百度了很久,没有直接的转换方法,参考 byte[]数组与十六进制字符串与字符串的互相转换 http://blog.163.com/roadwalker@126/blog/static/113 ...

  5. rpc使用JUnit模块测试设计的方法及常见问题

    RPC:Remote Procedure Call 远程过程调用 Wikipedia:http://en.wikipedia.org/wiki/Remote_Procedure_Call 百度百科:h ...

  6. Mac上安装与更新Ruby,Rails运行环境

    Mac安装后就安装Xcode是个好主意,它将帮你安装好Unix环境需要的开发包,也可以独立安装command_line_tools_for_xcode 1.安装RVM RVM:Ruby Version ...

  7. SharePoint Framework 配置Office 365开发者租户

    博客地址:http://blog.csdn.net/FoxDave 你需要一个Office 365开发者租户来使用预览版SharePoint Framework构建和发布客户端web部件.你的租户 ...

  8. C#编程:SqlCommand.Parameters.Add()方法的参数问题。

    在存储过程中添加2个参数 sql语句 例: “update [tablename] username = @username where id=@id” 然后把需要的 command.Paramete ...

  9. SSH面试题收藏

    Hibernate工作原理及为什么要用? 原理: 1. 读取并解析配置文件2. 读取并解析映射信息,创建SessionFactory3. 打开Sesssion4. 创建事务Transation5. 持 ...

  10. Mac下手动安装SafariDriver extension

    环境:Mac OS X Yosemite 10.10.4下, Safari 8 Step 1:第一次运行SafariDriver时,先找到WebDriver extension的安装路径,比如/Use ...