Longest Increasing Subsequence
很久不写算法了== 写个东西练练手
最长上升子序列
输入n,然后是数组a[ ]的n个元素
输出最长上升子序列的长度
一、最简单的方法复杂度O(n * n)
- DP[ i ] 是以a[ i ] 为结尾的最长上升子序列的长度。
- DP[ i ] = max{DP[ j ] + 1 | j < i && a[ j ] < a[ i ]}
代码:
/* * ===================================================================================== * Filename : LongestIncrSub1.cpp * Description : O(n^2) * Version : a better Algorithm of O(n^2) * Created : 03/22/14 22:03 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <climits> #include <cstdlib> ; int dp[MAXN], a[MAXN]; int n, i, j; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { ; i < n; ++i ) { scanf ( "%d", &a[i] ); dp[i] = INT_MAX; } ; i < n; ++i ) { ; j < n; ++j ) { || dp[j-] < a[i] ) { if ( dp[j] > a[i] ) { dp[j] = a[i]; } } } } ; ; j >= ; --j ) { if ( dp[j] != INT_MAX ) { result = j + ; break; } } printf ( "%d\n", result ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
二、因为长度相同的几个不同的子序列中,最末位数字最小的在之后比较有优势,所以用DP针对这个最小的末尾元素求解。
DP[ i ] 表示长度为 i + 1的上升子序列中末尾元素的最小值
从前往后扫描数组a[ ],对于每一个元素a[ i ],只需要在DP[ ] 数组中找到应该插入的位置。
if j == 0 || a[ i ] > DP[ j-1 ]
DP[ j ] = min{ DP[ j ], a[ i ]}
由于对于每个a[ i ] 都要扫描一遍DP[ ] 数组,所以复杂度还是O(n * n)
代码:
/* * ===================================================================================== * Filename : LongestIncrSub1.cpp * Description : O(n^2) * Version : a better Algorithm of O(n^2) * Created : 03/22/14 22:03 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <climits> #include <cstdlib> ; int dp[MAXN], a[MAXN]; int n, i, j; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { ; i < n; ++i ) { scanf ( "%d", &a[i] ); dp[i] = INT_MAX; } ; i < n; ++i ) { ; j < n; ++j ) { || dp[j-] < a[i] ) { if ( dp[j] > a[i] ) { dp[j] = a[i]; } } } } ; ; j >= ; --j ) { if ( dp[j] != INT_MAX ) { result = j + ; break; } } printf ( "%d\n", result ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
三、对于上一个算法,在DP[ ]数组中找a[ i ]元素的插入位置的时候,采用的是线性查找,由于DP[ ]这个数组是有序的,所以可以采用二分,这要复杂度就降到了O(nlogn),可以用STL函数lower_bound用来找第一个大于等于a[ i ]的位置。
代码:
/* * ===================================================================================== * Filename : LongestIncrSub2.cpp * Description : A better solution * Version : algorithm of O(nlogn) * Created : 03/22/14 22:37 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <cstdlib> #include <climits> #include <algorithm> using namespace std; ; int a[MAXN], dp[MAXN]; int i, n, result; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { fill(dp, dp + n, INT_MAX); ; i < n; ++i ) { scanf ( "%d", &a[i] ); } ; i < n; ++i ) { *lower_bound(dp, dp + n, a[i]) = a[i]; } result = lower_bound(dp, dp + n, INT_MAX) - dp; printf ( "%d\n", result ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
Source Code on GitHub
四、如何打印出最长上升子序列呢?
用一个position数组,position[ i ] 表示位置 i 的数字在上升子序列中的位置。也就是,插入dp数组中的位置。
比如
然后在position数组中从后往前找到第一次出现的3对应的a[ i ] = 8,然后接着找第一次出现的2对应的a[ i ] = 3,然后接着找第一次出现的1对应的a[ i ] = 2,最后接着
找第一次出现的0对应的a[ i ] = -7
所以,-7, 2, 3, 8就是最长上升子序列的一个解。这个解是在序列中最后出现的。
代码:
/* * ===================================================================================== * Filename : LongestIncrSub2.cpp * Description : A better solution * Version : algorithm of O(nlogn) * Created : 03/22/14 22:37 * Author : Liu Xue Yang (LXY), liuxueyang457@163.com * Motto : How about today? * ===================================================================================== */ #include <iostream> #include <cstdio> #include <cstdlib> #include <climits> #include <algorithm> using namespace std; ; int a[MAXN], dp[MAXN], position[MAXN], sub[MAXN]; int i, n, result; int main ( int argc, char *argv[] ) { #ifndef ONLINE_JUDGE // freopen("LongestIncrSub.txt", "r", stdin); #endif /* ----- not ONLINE_JUDGE ----- */ while ( ~scanf("%d", &n) ) { fill(dp, dp + n, INT_MAX); ; i < n; ++i ) { scanf ( "%d", &a[i] ); } int *tmp; ; i < n; ++i ) { tmp = lower_bound(dp, dp + n, a[i]); position[i] = tmp - dp; *tmp = a[i]; } result = lower_bound(dp, dp + n, INT_MAX) - dp; printf ( "%d\n", result ); ; ; i >= ; --i ) { if ( t == position[i] ) { sub[t] = a[i]; --t; } } ; i < result; ++i ) { if ( i ) { printf ( " " ); } printf ( "%d", sub[i] ); } printf ( "\n" ); } return EXIT_SUCCESS; } /* ---------- end of function main ---------- */
所有的代码在git里面
Longest Increasing Subsequence的更多相关文章
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [LeetCode] Longest Increasing Subsequence
Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...
- The Longest Increasing Subsequence (LIS)
传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
- leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)
https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...
- [Leetcode] Binary search, DP--300. Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
随机推荐
- Single-page app(SPA)
有哪些值得推荐的一页式网站(Single-page app)? http://pro.weltrade.com/en/ 最近开到一下国外网站,一页到底,感觉很高大上,到底是怎么做出来的呢?技术要点是什 ...
- OC基础--self关键字
Self的使用: 1 self不能离开类 离开类之后没有任何意义 2 self会自动区分类方法和对象方法 3 使用self的时候只需要关注self在哪一个方法中 如果在类方法中使用self 那 ...
- springMVC之<context:annotation-config />标签
springMVC的配置文件中经常见到<context:annotation-config/>,那么这句话的作用到底是什么呢? 现在的注解非常方便,但是系统如何才能识别注解呢,这就需要相应 ...
- JS实现登陆验证的主要代码及思路
window.onload = function(){ // 获取input标签 var alInput = document.getElementsByTagName("input&quo ...
- VMware下利用ubuntu13.04建立嵌入式开发环境之一
1.软件准备: (1) VMware网上很多,需要根据自己的需要选择,这里选用的VMware Workstation 9. (2)ubuntu 操作系统,同样根据自己的需要下载系统安装包.这里我选择 ...
- Activity中获取当前Fragment 中的子控件
XXXAdapter中 增加 public Fragment currentFragment; @Override public void setPrimaryItem(ViewGroup conta ...
- ubuntu 安装MTK 移动终端usb驱动
lsusbBus 001 Device 002: ID 8087:8000 Intel Corp. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation ...
- Dapper学习笔记(4)-事务
Dapper中对事务的处理也非常简单,如下代码所示: private void DapperTransaction() { using (IDbConnection con = OpenConnect ...
- 关于ajax跨域请求(cross Domain)
Cross Domain AJAX主要就是A.com网站的页面发出一个XMLHttpRequest,这个Request的url是B.com,这样的请求是被禁止的,浏览器处于安全考虑不允许进行跨域访问, ...
- NSLOG打印不全的问题
#ifdef DEBUG #define NSLog(FORMAT, ...) fprintf(stderr, "%s:%zd\t%s\n", [[[NSString string ...