[bzoj 3732] Network (Kruskal重构树)
kruskal重构树
Description
给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).
现在有 K个询问 (1 < = K < = 15,000)。
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Input
第一行: N, M, K。
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Output
对每个询问,输出最长的边最小值是多少。
Sample Input
6 6 8
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1
Sample Output
5
5
5
4
4
7
4
5
Hint
1 <= N <= 15,000
1 <= M <= 30,000
1 <= d_j <= 1,000,000,000
1 <= K <= 15,000
Solution
首先如果这道题是可以离线的,那么我们可以将边从小到大排序,每次加边,然后把两个端点所在的联通块并在一起。那么当A,B刚好联通时加的那条边的边权就是答案。但是本题强制在线,所以我们必须先预处理再回答询问。
我们按照kruskal求最小生成树的方式加边,但每次在加边时,新建一个节点,然后把两个联通块(其实是两棵二叉树)的根节点作为其左右儿子,把边权赋值给新建节点。那么我们可以发现这棵树有几个性质。
- 是一棵二叉树(虽然这道题并没有什么卵用);
- 满足父节点的值大于等于儿子节点,是一个大顶堆,这是最关键的一点;
- 原图上任意两点间路径最长边的最小值等于其lca的值;
这种建树的方法称作kruskal重构树。
那么A,B的lca就是所求答案。
Code
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 3e4 + 5;
int n, m, q, cnt, x, y;
int fa[maxn << 1], f[maxn << 1][20], dep[maxn << 1], val[maxn << 1], ch[maxn << 1][2];
int find(int x) {return fa[x] == x ? x : fa[x] = find(fa[x]);}
struct edge {
int u, v, w;
bool operator < (const edge &a) const {return w < a.w;}
} e[maxn << 1];
inline int ask(int u, int v) {
if(dep[u] < dep[v]) swap(u, v);
int t = dep[u] - dep[v];
for(int i = 0; i < 20; i++) if(t & (1<<i)) u = f[u][i];
for(int i = 19; ~i; i--) {
if(f[u][i] != f[v][i]) u = f[u][i], v = f[v][i];
}
if(u != v) u = f[u][0];
return u;
}
void dfs(int u) {
if(!ch[u][0]) return;
dep[ch[u][0]] = dep[ch[u][1]] = dep[u] + 1;
dfs(ch[u][0]), dfs(ch[u][1]);
}
int main() {
scanf("%d%d%d", &n, &m, &q), cnt = n;
for(int i = 0; i < m; i++) scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
sort(e, e + m);
for(int i = 1; i < maxn; i++) fa[i] = i, fa[i + maxn] = i + maxn;
for(int i = 0; i < m; i++) {
int u = e[i].u, v = e[i].v;
if(find(u) == find(v)) continue;
ch[++cnt][0] = fa[u], ch[cnt][1] = fa[v];
fa[fa[u]] = fa[fa[v]] = f[fa[u]][0] = f[fa[v]][0] = cnt;
val[cnt] = e[i].w;
}
dfs(cnt);
for(int j = 1; j < 20; j++)
for(int i = 1; i <= cnt; i++) f[i][j] = f[f[i][j-1]][j-1];
for(int i = 0; i < q; i++) {
scanf("%d%d", &x, &y);
printf("%d\n",val[ask(x, y)]);
}
return 0;
}
[bzoj 3732] Network (Kruskal重构树)的更多相关文章
- BZOJ 3732: Network Kruskal 重构树
模板题,练练手~ Code: #include <cstdio> #include <algorithm> #define N 80000 #define setIO(s) f ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- BZOJ3732: Network(Kruskal重构树)
题意 Link 给出一张$n$个点的无向图,每次询问两点之间边权最大值最小的路径 $n \leqslant 15000, m \leqslant 30000, k \leqslant 20000$ S ...
- BZOJ 3732 Network Kruskal+倍增LCA
题目大意:给定一个n个点m条边的无向连通图.k次询问两点之间全部路径中最长边的最小值 NOIP2013 货车运输.差点儿就是原题...仅仅只是最小边最大改成了最大边最小.. . 首先看到最大值最小第一 ...
- 【BZOJ】3732: Network【Kruskal重构树】
3732: Network Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2812 Solved: 1363[Submit][Status][Dis ...
- Kruskal重构树+LCA || BZOJ 3732: Network
题面:https://www.lydsy.com/JudgeOnline/problem.php?id=3732 题解:Kruskal重构树板子 代码: #include<cstdio> ...
- BZOJ 3732 Network 【模板】kruskal重构树
[题解] 首先,我们可以发现,A到B的所有路径中,最长边的最小值一定在最小生成树上.我们用Kruskal最小生成树时,假设有两个点集U,V,若加入一条边w(u,v)使U,V联通,那么w就是U中每个点到 ...
- Kruskal重构树学习笔记+BZOJ3732 Network
今天学了Kruskal重构树,似乎很有意思的样子~ 先看题面: BZOJ 题目大意:$n$ 个点 $m$ 条无向边的图,$k$ 个询问,每次询问从 $u$ 到 $v$ 的所有路径中,最长的边的最小值. ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
随机推荐
- C#代码
http://www.cnblogs.com/zjfree/category/269738.html 超简易静态Web服务器 C# 生成不重复随机字符串 (1秒内生成1000000个) C# 读写IN ...
- nuget github host
191.236.146.247 www.nuget.org191.236.146.247 nuget.org 192.30.253.112 github.com192.30.253.113 githu ...
- HTML初级入门内容
常用属性: Width=宽度 Height=高度 Size=大小 Color=颜色 Align=布局方向,值包括(top,bottom,left,right,center)上,下,左,右,中. Bor ...
- Swift 2.x -> Swift 3.0
Swift 3.0 相对于 2.x 有很大变化.特别是因为命名习惯的改变,导致许多 Api 都发生了变化.总的趋势是让表示更简洁. 对旧的代码升级,大部分可以根据提示来进行更正.但也有的需要手动修改. ...
- Python之路【第十九章】:Django 数据库对象关系映射
Django ORM基本配置 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MySQLdb 来连接数据库,并编写数据访问层代码 业务逻辑层去 ...
- AngularJS 2.0
https://angular.io/docs/ts/latest/guide/learning-angular.html QuickStart: git clone https://github.c ...
- Golang 逐行读写之scanner.Scan
Go语言实现逐行读的方法多种,本文只介绍Scaner的方法,也是go推荐的方法. 官方文档 例子: file, err := os.Open("filename") if err ...
- 改造过的JS颜色选择器
项目中用到颜色选择功能,在网上找了个颜色选择器,自己改了改代码.做成了一个可动态加载的颜色选择器. 把代码贴上,当是记录. /*Copyright(c)2009,www.supersite.me*/ ...
- tar压缩
tar 压 缩:tar -jcv -f filename.tar.bz2 要被压缩的文件或目录名称 查 询:tar -jtv -f filename.tar.bz2 解压缩:tar -jxv -f f ...
- [总结] I/O输入,输出
I/O输入,输出第一:先判断到底是输入还是输出,站在程序的立场第二:判断是传递字节,还是字符,决定管道粗细,字节流是最基本的数据输出管道.字符类型管道专门用来传送文本数据.Java流的四大父类:1.字 ...