${mapred.local.dir}选择策略--Map Task存放中间结果
上篇说了block在DataNode配置有多个${dfs.data.dir}时的存储策略,本文主要介绍TaskTracker在配置有多个${mapred.local.dir}时的选择策略。
mapred-site.xml
<property>
<name>mapred.local.dir</name>
<value>/mnt/localdir1/local,/mnt/localdir2/local,/mnt/localdir3/local</value>
</property>
当${mapred.local.dir}配置有多个目录分别用来挂载不同的硬盘时,Map Task的结果应该存放在哪个目录中?首先还是看一下方法的调用层次,如下图所示:
下面分析这两个方法:
/** Get a path from the local FS. If size is known, we go
* round-robin over the set of disks (via the configured dirs) and return
* the first complete path which has enough space.
*
* If size is not known, use roulette selection -- pick directories
* with probability proportional to their available space.
*/
public synchronized
Path getLocalPathForWrite(String pathStr, long size,
Configuration conf, boolean checkWrite
) throws IOException {
//检查task目录是否有变化
confChanged(conf);
int numDirs = localDirsPath.length; //获取${mapred.local.dir}目录的个数
int numDirsSearched = 0; //表示已经搜索过的次数
//remove the leading slash from the path (to make sure that the uri
//resolution results in a valid path on the dir being checked)
if (pathStr.startsWith("/")) { //是指output/spill0.out文件
pathStr = pathStr.substring(1);
}
Path returnPath = null;
Path path = new Path(pathStr); //当要写入的数据量大小未知时
if(size == SIZE_UNKNOWN) { //do roulette selection: pick dir with probability
//proportional to available size
long[] availableOnDisk = new long[dirDF.length];
long totalAvailable = 0; //build the "roulette wheel"
for(int i =0; i < dirDF.length; ++i) {
//分别计算每一个${mapred.local.dir}目录可用大小,并计算总的可用大小
availableOnDisk[i] = dirDF[i].getAvailable();
totalAvailable += availableOnDisk[i];
} // Keep rolling the wheel till we get a valid path
Random r = new java.util.Random();
while (numDirsSearched < numDirs && returnPath == null) {
long randomPosition = Math.abs(r.nextLong()) % totalAvailable;
int dir = 0;
while (randomPosition > availableOnDisk[dir]) {
randomPosition -= availableOnDisk[dir];
dir++;
}
dirNumLastAccessed = dir; //表示上次访问过的目录
//从${mapred.local.dir}中选择一个目录,在其下创建output/spill0.out文件
returnPath = createPath(path, checkWrite);
if (returnPath == null) { //如果创建失败(可能存在disk read-only的情况)
totalAvailable -= availableOnDisk[dir];
availableOnDisk[dir] = 0; // skip this disk
numDirsSearched++;
}
}
} else { //写入的数据量已知
while (numDirsSearched < numDirs && returnPath == null) {
long capacity = dirDF[dirNumLastAccessed].getAvailable();
if (capacity > size) {
returnPath = createPath(path, checkWrite);
}
//使用轮流的方式来选择${mapred.local.dir}
dirNumLastAccessed++;
dirNumLastAccessed = dirNumLastAccessed % numDirs;
numDirsSearched++;
}
}
if (returnPath != null) {
return returnPath;
} //no path found
throw new DiskErrorException("Could not find any valid local " +
"directory for " + pathStr);
}
confChanged(conf)方法首先检查原来的目录配置是否改变,这个下面说;然后给numDirs赋值,它表示总的${mapred.local.dir}目录个数,localDirsPath数组变量在confChanged(conf)方法中被更新了;接着在准备创建output/spill0.out文件,这个文件就是Map Task的运算结果在缓冲区写满之后spill到disk生成的文件,序号0代表序号,最后会将多个spill文件合成一个file.out文件;接下来就要选择${mapred.local.dir}目录了。其过程如下:
1、如果要写入的数据量大小未知时:
a) 计算dirDF数组中每个元素的剩余大小,并计算所有元素的总大小totalAvailable;
b) (循环)生成一个Long类型随机正数,该随机数对总大小totalAvailable取余后得randomPosition。
(内层循环)若randomPosition > 某个disk剩余量,则randomPosition减去该disk剩余量,并与下一个disk剩余量比较……
c) 选择了某个disk之后,如果这个disk不能创建文件,则排除这个disk,重新选择disk(总共尝试localDirsPath.length次)
2、要写入的数据量大小已知时:将${mapred.local.dir}组织成一个数组,轮流的使用数组中的目录。dirNumLastAccessed表示上次访问过的目录;
下面反过来分析下confChanged()方法。
实际上该方法中的获取到的localDirs数组所代表的目录,是Map Task或Reduce Task的工作目录(即attempt_jobid_taskid_m_attemptid*)。因为每次不同的Task会使用不同的工作目录。所以每次不同的Task来read/write数据时,该方法都会为他们构造工作目录。具体代码如下:
/** This method gets called everytime before any read/write to make sure
* that any change to localDirs is reflected immediately.
*/
private synchronized void confChanged(Configuration conf
) throws IOException {
//contextCfgItemName="mapred.local.dir"
String newLocalDirs = conf.get(contextCfgItemName);
if (!newLocalDirs.equals(savedLocalDirs)) { //savedLocalDirs代表上个task的工作目录
String[] localDirs = conf.getStrings(contextCfgItemName);
localFS = FileSystem.getLocal(conf);
int numDirs = localDirs.length; //${mapred.local.dir}目录的个数
ArrayList<String> dirs = new ArrayList<String>(numDirs);
ArrayList<DF> dfList = new ArrayList<DF>(numDirs);
for (int i = 0; i < numDirs; i++) {
try {
// filter problematic directories
Path tmpDir = new Path(localDirs[i]);
//检查task的工作目录(attempt....)是否存在,如果不存在,则新建
if(localFS.mkdirs(tmpDir)|| localFS.exists(tmpDir)) {
try {
DiskChecker.checkDir(new File(localDirs[i]));
dirs.add(localDirs[i]);
dfList.add(new DF(new File(localDirs[i]), 30000));
} catch (DiskErrorException de) {
LOG.warn( localDirs[i] + "is not writable\n" +
StringUtils.stringifyException(de));
}
} else {
LOG.warn( "Failed to create " + localDirs[i]);
}
} catch (IOException ie) {
LOG.warn( "Failed to create " + localDirs[i] + ": " +
ie.getMessage() + "\n" + StringUtils.stringifyException(ie));
} //ignore
}
localDirsPath = new Path[dirs.size()];
for(int i=0;i<localDirsPath.length;i++) {
localDirsPath[i] = new Path(dirs.get(i));
}
dirDF = dfList.toArray(new DF[dirs.size()]);
savedLocalDirs = newLocalDirs; //保存此次的task工作目录 // randomize the first disk picked in the round-robin selection
//因为该task所有的工作目录都遍历过了,所以随机选择一个目录作为最后访问过的目录
dirNumLastAccessed = dirIndexRandomizer.nextInt(dirs.size());
}
}
上面代码中的localDirsPath变量的内容如下所示:
/mapred/local/dir1/taskTracker/hadoop/jobcache/job_local1424926029_0001/attempt_local1424926029_0001_m_000000_0
/mapred/local/dir2/taskTracker/hadoop/jobcache/job_local1424926029_0001/attempt_local1424926029_0001_m_000000_0
/mapred/local/dir3/taskTracker/hadoop/jobcache/job_local1424926029_0001/attempt_local1424926029_0001_m_000000_0
可以看到,这些路径中就只有${mapred.local.dir}不同,其下的目录结构都完全一样。
说一下Task的工作目录。TaskTracker会在${mapred.local.dir}下生成相同的目录结构用来存放Map Task处理的结果数据,然后在Job完成时清理掉这些数据和目录。
Task的工作目录就是指:${mapred.local.dir}/taskTracker/${user}/jobcache/jobID/taskID目录。在这个目录下的output文件夹中就存放着Map Task的结果,并以上述方式使用这些目录。
才开始时,output目录下只有spill0.out文件(0代表序号),之后可能会产生多个spill文件。当Map Task执行完毕后会把所有属于该Task(即同一个taskid目录下)的spill文件合并成file.out文件。
变量dirDF代表了一个DF数组,DF类代表了disk的使用情况(使用"df -k"命令得到),包含的属性如下:
/**
* Filesystem disk space usage statistics. Uses the unix 'df' program to get
* mount points, and java.io.File for space utilization. Tested on Linux,
* FreeBSD, Cygwin.
*/
public class DF extends Shell { private final String dirPath;
private final File dirFile;
private String filesystem;
private String mount;
分析完写数据的部分后,读数据的部分就很简单了。使用getLocalPathToRead()方法,从整个${mapred.local.dir}/taskTracker/${user}/jobcache/jobID/taskID中寻找所需要的文件,找到后返回其路径信息即可。
${mapred.local.dir}的选择策略也有以下问题:
1、disk是只读的
2、Disk没有足够空间了(多个线程共享disk)
本文基于hadoop1.2.1
如有错误,还请指正
转载请注明出处:http://www.cnblogs.com/gwgyk/p/4124980.html
随机推荐
- eclipse添加easyExport插件,打开本地文件
下载地址:https://github.com/samsonw/OpenExplorer/downloads 官方:http://sourceforge.net/projects/easystruts ...
- 源码剖析——深入Windows句柄本质
参考资料: 1. http://www.codeforge.cn/read/146318/WinDef.h__html windef.h头文件 2. http://www.codeforge.cn/r ...
- (收集)linux环境下乱码的解决方法
**************************** 就是从数据库中取出来时,在存入linux的文件里时,在字符流时制定编码格式.代码如下: FileOutputStream fos=new Fi ...
- C#委托,事件理解入门 (译稿)
原文地址:http://www.codeproject.com/Articles/4773/Events-and-Delegates-Simplified 引用翻译地址:http://www.cnbl ...
- 运行 Spark on YARN
运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大 ...
- Strus2学习:基础(一)
Strus2基础: Sturs2起源以及背景: 在起源很早(2002年左右)的 strus1 和 webWork 基础上进行扩展,并且兼容这两大框架!总之很好用啦,随着学习的深入,应该会有更好的诠释的 ...
- 在控制台启动服务器时出现:对于服务器soa1_wls, 与计算机oim1相关联的节点管理器无法访问。
问题:在控制台启动服务器时出现:对于服务器soa1_wls, 与计算机oim1相关联的节点管理器无法访问.原因:nodemanager没有启起来解决方法: 一.对于managedServer于admi ...
- #define宏定义形式的"函数"导致的bug
定义了一个宏定义形式的"函数": #define SUM8(YY)\ {\ int Y = YY>>2;\ ...\ } 然后使用的时候,传入了一个同名的变量Y: i ...
- 使用JS实现轮播图的效果
其中的一些css样式代码就省略了,下面只把结构层html.行为层js的代码展示出来 ,看代码说事. 一.简单的轮播图 <div class="box" id="bo ...
- [求助] win7 x64 封装 出现 Administrator.xxxxx 的问题
[求助] win7 x64 封装 出现 Administrator.xxxxx 的问题 jacky_qu 发表于 2014-9-3 23:34:37 https://www.itsk.com/thre ...