MXNet学习~试用卷积~跑CIFAR-10
第一次用卷积,看的别人的模型跑的CIFAR-10,不过吐槽一下。。。我觉着我的965m加速之后比我的cpu算起来没快多少。。正确率64%的样子,没达到模型里说的75%,不知道问题出在哪里
import numpy as np
import os
import mxnet as mx
import logging
import cPickle def unpickle(file):
with open(file,'rb') as fo:
dict = cPickle.load(fo)
return np.array(dict['data']).reshape(10000,3072),np.array(dict['labels']).reshape(10000) def to4d(img):
return img.reshape(img.shape[0],3,32,32).astype(np.float32)/255 def fit(batch_num,model,val_iter,batch_size):
(train_img, train_lbl) = unpickle('cifar-10/data_batch_'+str(batch_num))
train_iter = mx.io.NDArrayIter(to4d(train_img), train_lbl, batch_size, shuffle=True)
model.fit(
X=train_iter,
eval_data=val_iter,
batch_end_callback=mx.callback.Speedometer(batch_size,200)
) (val_img, val_lbl) = unpickle('cifar-10/test_batch') batch_size = 100
val_iter = mx.io.NDArrayIter(to4d(val_img),val_lbl,batch_size) data = mx.sym.Variable('data')
cv1 = mx.sym.Convolution(data=data,name='cv1',num_filter=32,kernel=(3,3))
act1 = mx.sym.Activation(data=cv1,name='relu1',act_type='relu')
poing1 = mx.sym.Pooling(data=act1,name='poing1',kernel=(2,2),pool_type='max')
do1 = mx.sym.Dropout(data=poing1,name='do1',p=0.25)
cv2 = mx.sym.Convolution(data=do1,name='cv2',num_filter=32,kernel=(3,3))
act2 = mx.sym.Activation(data=cv2,name='relu2',act_type='relu')
poing2 = mx.sym.Pooling(data=act2,name='poing2',kernel=(2,2),pool_type='avg')
do2 = mx.sym.Dropout(data=poing2,name='do2',p=0.25)
cv3 = mx.sym.Convolution(data=do2,name='cv3',num_filter=64,kernel=(3,3))
act3 = mx.sym.Activation(data=cv3,name='relu3',act_type='relu')
poing3 = mx.sym.Pooling(data=act3,name='poing3',kernel=(2,2),pool_type='avg')
do3 = mx.sym.Dropout(data=poing3,name='do3',p=0.25)
data = mx.sym.Flatten(data=do3)
fc1 = mx.sym.FullyConnected(data=data,name='fc1',num_hidden=64)
act4 = mx.sym.Activation(data=fc1,name='relu4',act_type='relu')
do4 = mx.sym.Dropout(data=act4,name='do4',p=0.25)
fc2 = mx.sym.FullyConnected(data=do4,name='fc2',num_hidden=10)
mlp = mx.sym.SoftmaxOutput(data=fc2,name='softmax') logging.getLogger().setLevel(logging.DEBUG) model = mx.model.FeedForward(
ctx=mx.gpu(0),
symbol=mlp,
num_epoch=10,
learning_rate=0.1
)
for batch_num in range(1,6):
fit(batch_num, model, val_iter, batch_size)
MXNet学习~试用卷积~跑CIFAR-10的更多相关文章
- MXNet学习:试用卷积-训练CIFAR-10数据集
第一次用卷积,看的别人的模型跑的CIFAR-10,不过吐槽一下...我觉着我的965m加速之后比我的cpu算起来没快多少..正确率64%的样子,没达到模型里说的75%,不知道问题出在哪里 import ...
- Keras学习:试用卷积-训练CIFAR-10数据集
import numpy as np import cPickle import keras as ks from keras.layers import Dense, Activation, Fla ...
- 【翻译】TensorFlow卷积神经网络识别CIFAR 10Convolutional Neural Network (CNN)| CIFAR 10 TensorFlow
原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, ...
- 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别
验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...
- 深度学习之卷积神经网络(CNN)详解与代码实现(二)
用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...
- Mxnet学习资源
MxNet 学习笔记(1):MxNet中的NDArray http://mxnet.incubator.apache.org/api/python/symbol/symbol.html api文档 M ...
- 深度学习之卷积神经网络CNN及tensorflow代码实例
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...
- 深度学习之卷积神经网络CNN及tensorflow代码实现示例
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习 版权声明 ...
- 【神经网络与深度学习】卷积神经网络(CNN)
[神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...
- PHP学习笔记 - 进阶篇(10)
PHP学习笔记 - 进阶篇(10) 异常处理 抛出一个异常 从PHP5开始,PHP支持异常处理,异常处理是面向对象一个重要特性,PHP代码中的异常通过throw抛出,异常抛出之后,后面的代码将不会再被 ...
随机推荐
- SSH三大框架的JAR包下载地址
官网的英文网站读起来有点费劲,把下载地址直接放到这儿,以后免得到处找了 Struts 2 : http://struts.apache.org/download.cgi#struts216 sprin ...
- java分享第十二天(接口测试jsoup&cookie)
一.Cookies到底是什么鬼?简单来说,Cookies就是服务器暂时存放在客户端(你的电脑里)的资料(.txt格式的文本文件),好让服务器用来辨认 你的计算机.当你在浏览网站的时候,Web服务器会先 ...
- mallmold开源商城系统网银在线chinabank支付插件
最近没事捣鼓项目,找了个轻型商城系统mallmold,用起来还觉的挺不错的,尤其是mallmold中文版,赞一个.中文版集成了大部分主流支付系统,但因是个人网站,没法获得对应的服务,最终选择了网银在线 ...
- JS base64 加密和 后台 base64解密(防止中文乱码)
直接上代码 1,js(2个文件,网上找的) 不要觉的长,直接复制下来就OK //UnicodeAnsi.js文件 //把Unicode转成Ansi和把Ansi转换成Unicode function ...
- sublime3+quick3.5 完整使用教程
sublime3+quick3.5 完整使用教程 Administrator 2015-07-15 14:43:08 1. 安装Sublime3 2. 注册Sublime3 Help- ...
- FileOutputStream和FileInputStream的用法
public static void show() { File f=new File("d:"+File.separator+"1.txt"); FileOu ...
- cout中的执行顺序_a++和++a
printf和cout从右到左计算: int main() { /* char* str = NULL; setmemory(&str, 100); strcpy(str, "hel ...
- ES6 ( 三 ) 字符串扩展
一.字符Unicode表示方法 ES6中可以使用以下6种方法表示字符 '\z' === 'z' // true '\172' === 'z' // true '\x7A' === 'z' // tru ...
- 兼容IE浏览器的js浏览器全屏代码
众所周知,IE是个奇葩的浏览器,但是由于用户量很大,开发者还是不得不为IE考虑一下,于是,各种浏览器相关的操作,都要多一个特别的判断——专门针对IE浏览器的判断,这里的全屏也不例外.看代码: func ...
- Java编程中-servlet
今天将别人的项目导入eclipse之后,出现了“The import javax.servlet cannot be resolved”错误 import javax.servlet.ServletE ...