HDU 1141---Brackets Sequence(区间DP)
题目链接
http://poj.org/problem?id=1141
Description
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
Output
Sample Input
([(]
Sample Output
()[()]
Source
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int inf=0x3f3f3f3f;
char s[];
int v[][];
int dp[][]; void print(int l,int r)
{
if(r<l) return;
if(l==r)
{
if(s[l]=='('||s[l]==')')
printf("()");
else
printf("[]");
return;
}
if(v[l][r]==-)
{
if(s[l]=='(')
{
printf("(");
print(l+,r-);
printf(")");
}
else
{
printf("[");
print(l+,r-);
printf("]");
}
}
else
{
print(l,v[l][r]);
print(v[l][r]+,r);
}
} int main()
{
scanf("%s",s);
int len=strlen(s);
memset(dp,,sizeof(dp));
for(int i=; i<len; i++)
dp[i][i]=; for(int l=; l<len; l++)
{
for(int i=; i+l<len; i++)
{
dp[i][i+l]=inf;
for(int k=i; k<i+l; k++)
{
if(dp[i][i+l]>dp[i][k]+dp[k+][i+l])
{
dp[i][i+l]=dp[i][k]+dp[k+][i+l];
v[i][i+l]=k;
}
}
if(s[i]=='('&&s[i+l]==')'||s[i]=='['&&s[i+l]==']')
{
if(dp[i][i+l]>dp[i+][i+l-]+)
{
dp[i][i+l]=dp[i+][i+l-]+;
v[i][i+l]=-;
}
}
}
}
print(,len-);
printf("\n");
return ;
}
HDU 1141---Brackets Sequence(区间DP)的更多相关文章
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- poj 1141 Brackets Sequence 区间dp,分块记录
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35049 Accepted: 101 ...
- poj 1141 Brackets Sequence (区间dp)
题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...
- poj 1141 Brackets Sequence ( 区间dp+输出方案 )
http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...
- UVA 1626 Brackets sequence 区间DP
题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...
- Ural 1183 Brackets Sequence(区间DP+记忆化搜索)
题目地址:Ural 1183 最终把这题给A了.. .拖拉了好长时间,.. 自己想还是想不出来,正好紫书上有这题. d[i][j]为输入序列从下标i到下标j最少须要加多少括号才干成为合法序列.0< ...
- 区间DP POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29520 Accepted: 840 ...
- POJ 1141 Brackets Sequence (区间DP)
Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...
- POJ 题目1141 Brackets Sequence(区间DP记录路径)
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 27793 Accepted: 788 ...
- ZOJ1463:Brackets Sequence(间隙DP)
Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular seque ...
随机推荐
- 将不确定变为确定~transactionscope何时提升为分布式事务~SQL2005与SQL2008不同
回到目录 Transactionscope何时被提升为分布式事务,即时要触发msdtc服务,这个问题与数据库版本有关,在前面的文章中,我的MSTDC系列出现了多个版本,有一点没有说清楚,测试的环境不同 ...
- Atitit 发帖机系列(7) 词法分析的方法attilax大总结)
Atitit 发帖机系列(7) 词法分析的方法attilax大总结) 1.1. 词法分析貌似俩大方法,一个直接根据状态图转换,一个根据dfa1 1.2. switchcase或者ifelse 最原始方 ...
- git回滚到任意版本
git回滚到任意版本 先显示提交的log $ git log -3 commit 4dc08bb8996a6ee02f Author: Mark <xxx@xx.com> Date: We ...
- 移动端IM开发需要面对的技术问题
1.前言 这两年多一直从事网易云信 iOS 端 IM SDK的开发,期间不断有兄弟部门的同事和合作伙伴过来问各种技术细节,干脆统一介绍下一个IM APP的方方面面,包括技术选型(包括通讯方式,网络连接 ...
- java之内部类详解
序言 有位小同学要我写一篇这个的总结,我说那好吧,那就动手写总结一下这个内部类的知识,感觉这个在面试中也会经常遇到,内部类.反射.集合.IO流.异常.多线程.泛型这些重要的基础知识大家都比较容易记不住 ...
- HTML5横竖屏提示
HTML代码: <div class="screen-prompt"></div> CSS判断代码: /*横竖屏提示*/ @media screen and ...
- Android应用中使用AsyncHttpClient来异步网络数据(转载)
摘要: 首先下载AsyncHttpClient的库文件,可以自行搜索,可以到下面地址下载 http://download.csdn.net/detail/xujinyang1234/5767419 测 ...
- python单线程爬虫code
广度优先算法: # -*- coding: utf-8 -*- import urllib import urllib.request from bs4 import BeautifulSoup im ...
- C#基础-----面向对象
C#基础-----面向对象(一) 分类: C#基础2015-06-08 14:10 2人阅读 评论(0) 收藏 举报 1,面向对象 什么是面向对象?一个分析问题的方式(增强了程序的可扩展性) 几个名词 ...
- tomcat server容器解读
1. server的实例类为:org.apache.catalina.core.StandardServer为顶层容器. 2.二级容器GlobalNamingResources,设置认证用户信息. & ...