关于多分类

我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。

关于softmax

softmax的函数为

P(i)=exp(θTix)∑Kk=1exp(θTkx)

可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。

θTix为多个输入,训练其实就是为了逼近最佳的θT。

如何多分类

从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。

继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是soft的功能。

计算过程直接看下图,其中zLi即为θTix,三个输入的值分别为3、1、-3,ez的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88、0.12、0。

代价函数

对于训练集{(x(1),y(1)),...,(x(m),y(m))},有y(i)∈{1,2,3...,k},总共有k个分类。对于每个输入x都会有对应每个类的概率,即p(y=j|x),从向量角度来看,有,

hθ(x(i))=⎡⎣⎢⎢⎢⎢⎢p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)⋮p(y(i)=k|x(i);θ)⎤⎦⎥⎥⎥⎥⎥=1∑kj=1eθTj⋅x(i)⎡⎣⎢⎢⎢⎢⎢eθT1⋅x(i)eθT2⋅x(i)⋮eθTk⋅x(i)⎤⎦⎥⎥⎥⎥⎥

softmax的代价函数定为如下,其中包含了示性函数1{j=y(i)},表示如果第i个样本的类别为j则yij=1。代价函数可看成是最大化似然函数,也即是最小化负对数似然函数。

J(θ)=−1m[∑mi=1∑kj=11{y(i)=j}⋅log(p(y(i)=j|x(i);θ))]

其中,p(y(i)=j|x(i);θ)=exp(θTix)∑Kk=1exp(θTkx)则,

J(θ)=−1m[∑mi=1∑kj=11{y(i)=j}⋅(θTjx(i)−log(∑kl=1eθTl⋅x(i)))]

一般使用梯度下降优化算法来最小化代价函数,而其中会涉及到偏导数,即θj:=θj−αδθjJ(θ),则J(θ)对θj求偏导,得到,

∇J(θ)∇θj=−1m∑mi=1[∇∑kj=11{y(i)=j}θTjx(i)∇θj−∇∑kj=11{y(i)=j}log(∑kl=1eθTl⋅x(i)))∇θj]

=−1m∑mi=1[1{y(i)=j}x(i)−∇∑kj=11{y(i)=j}∑kl=1eθTl⋅x(i)∑kl=1eθTl⋅x(i)∇θj]

=−1m∑mi=1[1{y(i)=j}x(i)−x(i)eθTj⋅x(i)∑kl=1eθTl⋅x(i)]

=−1m∑mi=1x(i)[1{y(i)=j}−p(y(i)=j|x(i);θ)]

得到代价函数对参数权重的梯度就可以优化了。

使用场景

在多分类场景中可以用softmax也可以用多个二分类器组合成多分类,比如多个逻辑分类器或SVM分类器等等。该使用softmax还是组合分类器,主要看分类的类别是否互斥,如果互斥则用softmax,如果不是互斥的则使用组合分类器。

========广告时间========

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================

欢迎关注:

softmax的多分类的更多相关文章

  1. softmax与多分类

    sotfmax 函数在机器学习和深度学习中有着广泛的应用, 主要用于多分类问题. softmax 函数 1. 定义 假定数组V,那么第i个元素的softmax值为 也就是该元素的指数 除以 所有元素的 ...

  2. Softmax回归(Softmax Regression, K分类问题)

    Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集:                     系统参数为:      Softmax回归与Logist ...

  3. softmax实现cifar10分类

    将cifar10改成单一通道后,套用前面的softmax分类,分类率40%左右,想哭... .caret, .dropup > .btn > .caret { border-top-col ...

  4. 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型

    目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...

  5. 《转》Logistic回归 多分类问题的推广算法--Softmax回归

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  6. Softmax回归——logistic回归模型在多分类问题上的推广

    Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...

  7. 逻辑回归,多分类推广算法softmax回归中

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  8. Softmax回归

    Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...

  9. Softmax回归(Softmax Regression)

    转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...

随机推荐

  1. C++求矩阵的鞍点

    矩阵的鞍点就是指它在本行中的值最大,在本列中的值最小. 求解思路: 求出每行的最大值MaxRow以及每列的最小值MinColumn 保存行最大值的位置和列最小值的位置 如果行最大值得位置和列最小值的相 ...

  2. C/C++中RAND_MAX的用法

    RAND_MAX是C中stdlib.h中宏定义的一个字符常量: #define RAND_MAX Ox7FFF 其值最小为32767,最大为2147483647 通常在产生随机小数时可以使用RAND_ ...

  3. sqoop将mysql的tinyint类型转化为boolean类型

    当mysql中的字段为tinyint类型时,通过sqoop导入数据到hdfs上,在hdfs上显示的是true,false值.为了显示0,1. 解决方法: jdbc:mysql://<hostna ...

  4. js去除前后空格

    <script language="javascript"> String.prototype.trim=function(){     return this.rep ...

  5. .Net HttpClient form-data格式请求

    var multipartFormDataContent = new MultipartFormDataContent(); multipartFormDataContent.Add(new Stri ...

  6. 【cs231n】图像分类笔记

    前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接: ...

  7. 【论文解析】MTCNN论文要点翻译

    目录 0.论文连接 1.前言 2.论文Abstract翻译 3.论文的主要贡献 4.4 训练 5 模型性能分析 5.1 关于在线挖掘困难样本的性能 5.2 将人脸检测与对齐联合的性能 5.3 人脸检测 ...

  8. tcpdump抓包笔记

    抓取指定端口的数据包 并保存文件,用wireshark分析 tcpdump -Ans 4096 -i any port 8080 -w ../mpass.cap 抓取指定端口和指定ip的数据包 并保存 ...

  9. CGI-FASTCGI-PHPFPM

    随意记录,摘自知乎 原文链接:https://segmentfault.com/q/1010000000256516 首先,CGI是干嘛的?CGI是为了保证web server传递过来的数据是标准格式 ...

  10. 全文检索引擎Solr系列——整合中文分词组件mmseg4j

    默认Solr提供的分词组件对中文的支持是不友好的,比如:“VIM比作是编辑器之神”这个句子在索引的的时候,选择FieldType为”text_general”作为分词依据时,分词效果是: 它把每一个词 ...