关于多分类

我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。

关于softmax

softmax的函数为

P(i)=exp(θTix)∑Kk=1exp(θTkx)

可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。

θTix为多个输入,训练其实就是为了逼近最佳的θT。

如何多分类

从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。

继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是soft的功能。

计算过程直接看下图,其中zLi即为θTix,三个输入的值分别为3、1、-3,ez的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88、0.12、0。

代价函数

对于训练集{(x(1),y(1)),...,(x(m),y(m))},有y(i)∈{1,2,3...,k},总共有k个分类。对于每个输入x都会有对应每个类的概率,即p(y=j|x),从向量角度来看,有,

hθ(x(i))=⎡⎣⎢⎢⎢⎢⎢p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)⋮p(y(i)=k|x(i);θ)⎤⎦⎥⎥⎥⎥⎥=1∑kj=1eθTj⋅x(i)⎡⎣⎢⎢⎢⎢⎢eθT1⋅x(i)eθT2⋅x(i)⋮eθTk⋅x(i)⎤⎦⎥⎥⎥⎥⎥

softmax的代价函数定为如下,其中包含了示性函数1{j=y(i)},表示如果第i个样本的类别为j则yij=1。代价函数可看成是最大化似然函数,也即是最小化负对数似然函数。

J(θ)=−1m[∑mi=1∑kj=11{y(i)=j}⋅log(p(y(i)=j|x(i);θ))]

其中,p(y(i)=j|x(i);θ)=exp(θTix)∑Kk=1exp(θTkx)则,

J(θ)=−1m[∑mi=1∑kj=11{y(i)=j}⋅(θTjx(i)−log(∑kl=1eθTl⋅x(i)))]

一般使用梯度下降优化算法来最小化代价函数,而其中会涉及到偏导数,即θj:=θj−αδθjJ(θ),则J(θ)对θj求偏导,得到,

∇J(θ)∇θj=−1m∑mi=1[∇∑kj=11{y(i)=j}θTjx(i)∇θj−∇∑kj=11{y(i)=j}log(∑kl=1eθTl⋅x(i)))∇θj]

=−1m∑mi=1[1{y(i)=j}x(i)−∇∑kj=11{y(i)=j}∑kl=1eθTl⋅x(i)∑kl=1eθTl⋅x(i)∇θj]

=−1m∑mi=1[1{y(i)=j}x(i)−x(i)eθTj⋅x(i)∑kl=1eθTl⋅x(i)]

=−1m∑mi=1x(i)[1{y(i)=j}−p(y(i)=j|x(i);θ)]

得到代价函数对参数权重的梯度就可以优化了。

使用场景

在多分类场景中可以用softmax也可以用多个二分类器组合成多分类,比如多个逻辑分类器或SVM分类器等等。该使用softmax还是组合分类器,主要看分类的类别是否互斥,如果互斥则用softmax,如果不是互斥的则使用组合分类器。

========广告时间========

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================

欢迎关注:

softmax的多分类的更多相关文章

  1. softmax与多分类

    sotfmax 函数在机器学习和深度学习中有着广泛的应用, 主要用于多分类问题. softmax 函数 1. 定义 假定数组V,那么第i个元素的softmax值为 也就是该元素的指数 除以 所有元素的 ...

  2. Softmax回归(Softmax Regression, K分类问题)

    Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集:                     系统参数为:      Softmax回归与Logist ...

  3. softmax实现cifar10分类

    将cifar10改成单一通道后,套用前面的softmax分类,分类率40%左右,想哭... .caret, .dropup > .btn > .caret { border-top-col ...

  4. 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型

    目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...

  5. 《转》Logistic回归 多分类问题的推广算法--Softmax回归

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  6. Softmax回归——logistic回归模型在多分类问题上的推广

    Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...

  7. 逻辑回归,多分类推广算法softmax回归中

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  8. Softmax回归

    Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...

  9. Softmax回归(Softmax Regression)

    转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...

随机推荐

  1. 20145321 《Java程序设计》第7周学习总结

    20145321 <Java程序设计>第7周学习总结 教材学习内容总结 第十三章 时间与日期 13.1 认识时间与日期 1.格林威治时间(GMT) 观察太阳得来 2.世界时(UT) 3.国 ...

  2. scrapy之Pymongo

    用Pymongo保存数据 爬取豆瓣电影top250movie.douban.com/top250的电影数据,并保存在MongoDB中. items.py class DoubanspiderItem( ...

  3. 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析

    目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...

  4. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 B题

    2017-09-24 19:16:38 writer:pprp 题目链接:https://www.jisuanke.com/contest/877 题目如下: You are given a list ...

  5. LCS最长共同子序列

    2017-09-02 15:06:57 writer:pprp 状态表示: f(n,m)表示s1[0..n]和s2[0..m]从0开始计数,最终结果是f(N-1,M-1)考虑四种情况: 1/ s1[n ...

  6. Linux 下的jdk安装

    Linux 下安装JDK1.8 https://www.cnblogs.com/xuliangxing/p/7066913.html http://www.oracle.com/technetwork ...

  7. Asp.Net将Session保存在数据库中

    1.由于项目dll文件变动比较频繁,而保存登陆的状态又保存在Session中,所以导致用户经常无故掉线.(dll变动的时候导致Session丢失) 2.有一种方法可以长期保存session,那就是se ...

  8. JS书籍推荐

    JS书籍推荐 一.总结 一句话总结: 二.JS进阶书籍 第一阶段:<JavaScript DOM编程艺术> 看这本书之前,请先确认您对Javascript有个基本的了解,应该知道if el ...

  9. C++(二十四) — 指向字符的指针为什么可以用字符串来初始化,而不是字符地址?

    一.C语言中,为什么字符串可以赋值给字符指针变量? char *p: a='; p=&a; //显然是正确的, p="abcd"; //但为什么也可以这样赋值?? 问:一直 ...

  10. Python实现CSV数据的读取--两种方法实现

    方法一: 方法二: