题目传送门

约数研究

题目描述

科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能。由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samuel II”进行数学研究。

小联最近在研究和约数有关的问题,他统计每个正数N的约数的个数,并以f(N)来表示。例如12的约数有1、2、3、4、6、12。因此f(12)=6。下表给出了一些f(N)的取值:

f(n)表示n的约数个数,现在给出n,要求求出f(1)到f(n)的总和。

输入输出格式

输入格式:

输入一行,一个整数n

输出格式:

输出一个整数,表示总和

输入输出样例

输入样例#1:

3
输出样例#1:

5

说明

【数据范围】

20%N<=5000

100%N<=1000000


  分析:

  没错,这是一道非常水的题,但也是一道非常好的数论分块入门题。

  求$1$~$n$的约数个数的和可以转换成求包含$1$~$n$的数的个数和,所以答案就是$\sum^n_{i=1}\frac{n}{i}$。

  但是如果数据范围再大点,比如$n\leq 10^{14}$?这就需要用到数论分块。

  对于某几个$i$,实际上$\frac{n}{i}$的结果都是一样的,所以我们可以直接跳过这一部分,跳到某一个$j$使得$\frac{n}{j}=\frac{n}{i}+1$。这就是数论分块的基本思想。

  Code:

  

//It is made by HolseLee on 12th Sep 2018
//Luogu.org P1403
#include<cstdio>
int main()
{
int n,ans=; scanf("%d",&n);
for(int i=,j; i<=n; i=j+) {
j=n/(n/i); ans+=(n/i)*(j-i+);
}
printf("%d",ans); return ;
}

洛谷P1403 [AHOI2005] 约数研究 [数论分块]的更多相关文章

  1. 洛谷——P1403 [AHOI2005]约数研究

    P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工 ...

  2. 洛谷 P1403 [AHOI2005]约数研究

    怎么会有这么水的省选题 一定是个签到题. 好歹它也是个省选题,独立做出要纪念一下 很容易发现在1~n中,i的因子数是n / i 那就枚举每一个i然后加起来就OK了 #include<cstdio ...

  3. 【洛谷P1403】约数研究

    题目大意:求\[\sum\limits_{i=1}^n\sum\limits_{d|i}1\] 题解:交换求和顺序即可. \[\sum\limits_{i=1}^n\sum\limits_{d|i}1 ...

  4. P1403 [AHOI2005]约数研究

    原题链接 https://www.luogu.org/problemnew/show/P1403 这个好难啊,求约数和一般的套路就是求1--n所有的约数再一一求和,求约数又要用for循环来判断.... ...

  5. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  6. P1403 [AHOI2005]约数研究 题解

    转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...

  7. BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块

    第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...

  8. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  9. BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...

随机推荐

  1. Spring 源码学习(3) —— 增加属性注册编辑器

    创建一个实体类UserManager: /** * @filename: UserManager.java * @desc 增加属性编辑器功能测试实体类 * @author: Wang Chinda ...

  2. excel表格添加固定宽高的图片

    import xlsxwriter,xlrd import glob #打开excel文件 data=xlrd.open_workbook('优秀创意库-20180725.xlsx') #获取第一张工 ...

  3. AJAX流程

    创建一个XHR对象 var xmlhttp; if (window.XMLHttpRequest) {// code for IE7+, Firefox, Chrome, Opera, Safari ...

  4. asp.net DataTable导出 excel的方法记录(第三方)

    官网:http://npoi.codeplex.com/ 简单应用,主要是可以实现我们想要的简单效果,呵呵 需要引入dll,可以在官网下载,也可在下面下载 protected void getExce ...

  5. 【BZOJ】1711: [Usaco2007 Open]Dining吃饭

    [算法]最大流 [题解] S连向食物连向牛连向牛‘连向饮料连向T. 经典的一个元素依赖于两个元素的建图方式. #include<cstdio> #include<algorithm& ...

  6. JS 判断是否是微信浏览器 webview

    原理很简单,就是判断 ua 中是否有字段 “micromessenger" 代码如下: function isWechat () { var ua = window.navigator.us ...

  7. AngularJs 文件上传(实现Multipart/form-data 文件的上传)

    <!-- 上传yml文件 --> <div class="blackBoard" ng-show="vm.showUpop==true"> ...

  8. Linux进程调度原理【转】

    转自:http://www.cnblogs.com/zhaoyl/archive/2012/09/04/2671156.html Linux进程调度的目标 1.高效性:高效意味着在相同的时间下要完成更 ...

  9. linux系统性能排查命令

    [top] 命令可以动态查看当前系统的资源情况,以及占用资源的命令列表 用法: - ctrl + c / q : 停止此命令运行 - c : 展示完整的命令 - [top -bn1]:可以不动态的展示 ...

  10. u-boot中的Makefile

    在windos下,pc机上电之后,BIOS会初始化硬件配置,为内核传递参数,引导操作系统启动,并且识别C盘.D盘.等整个操作系统启动起来之后,才可以运行应用程序比如QQ.QQ音影.同理,在嵌入式Lin ...