洛谷P1403 [AHOI2005] 约数研究 [数论分块]
约数研究
题目描述
科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能。由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samuel II”进行数学研究。
小联最近在研究和约数有关的问题,他统计每个正数N的约数的个数,并以f(N)来表示。例如12的约数有1、2、3、4、6、12。因此f(12)=6。下表给出了一些f(N)的取值:
f(n)表示n的约数个数,现在给出n,要求求出f(1)到f(n)的总和。
输入输出格式
输入格式:
输入一行,一个整数n
输出格式:
输出一个整数,表示总和
输入输出样例
3
5
说明
【数据范围】
20%N<=5000
100%N<=1000000
分析:
没错,这是一道非常水的题,但也是一道非常好的数论分块入门题。
求$1$~$n$的约数个数的和可以转换成求包含$1$~$n$的数的个数和,所以答案就是$\sum^n_{i=1}\frac{n}{i}$。
但是如果数据范围再大点,比如$n\leq 10^{14}$?这就需要用到数论分块。
对于某几个$i$,实际上$\frac{n}{i}$的结果都是一样的,所以我们可以直接跳过这一部分,跳到某一个$j$使得$\frac{n}{j}=\frac{n}{i}+1$。这就是数论分块的基本思想。
Code:
//It is made by HolseLee on 12th Sep 2018
//Luogu.org P1403
#include<cstdio>
int main()
{
int n,ans=; scanf("%d",&n);
for(int i=,j; i<=n; i=j+) {
j=n/(n/i); ans+=(n/i)*(j-i+);
}
printf("%d",ans); return ;
}
洛谷P1403 [AHOI2005] 约数研究 [数论分块]的更多相关文章
- 洛谷——P1403 [AHOI2005]约数研究
P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工 ...
- 洛谷 P1403 [AHOI2005]约数研究
怎么会有这么水的省选题 一定是个签到题. 好歹它也是个省选题,独立做出要纪念一下 很容易发现在1~n中,i的因子数是n / i 那就枚举每一个i然后加起来就OK了 #include<cstdio ...
- 【洛谷P1403】约数研究
题目大意:求\[\sum\limits_{i=1}^n\sum\limits_{d|i}1\] 题解:交换求和顺序即可. \[\sum\limits_{i=1}^n\sum\limits_{d|i}1 ...
- P1403 [AHOI2005]约数研究
原题链接 https://www.luogu.org/problemnew/show/P1403 这个好难啊,求约数和一般的套路就是求1--n所有的约数再一一求和,求约数又要用for循环来判断.... ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- P1403 [AHOI2005]约数研究 题解
转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...
- BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块
第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...
随机推荐
- 【Android】完善Android学习(七:API 4.0.3)
备注:之前Android入门学习的书籍使用的是杨丰盛的<Android应用开发揭秘>,这本书是基于Android 2.2API的,目前Android已经到4.4了,更新了很多的API,也增 ...
- CF821 D. Okabe and City 图 最短路
Link 题意:给出$n*m$大小的地图,已有$k$盏灯亮,人从左上角出发,右下角结束,期间必须走路灯点亮的地方,他可以在任意时刻消耗一枚硬币点亮一行或一列灯,他最多同时点亮一行或一列灯,要想点亮别的 ...
- 优美的代码:do...while(0)
1.背景 最近再看一个开源代码的时候,看到很多宏经常这么写的: #define XXX do{\ ...\ }) 一眼看到的时候就知道这一份代码执行一次,那么do...while还有什么意义呢?在查阅 ...
- JVM学习十:JVM之垃圾收集器及GC参数
接近两个月左右没有写博客,主要是因为小孩过来后,回家比较忙,现在小孩端午送回家了,开始继续之前的JVM学习之路,前面学习了GC的算法和种类,那么本章则是基于算法来产生实际的用途,即垃圾收集器. 一.堆 ...
- 基本控件文档-UITableView---iOS-Apple苹果官方文档翻译
//转载请注明出处--本文永久链接:http://www.cnblogs.com/ChenYilong/p/3496969.html 技术博客http://www.cnblogs.com/ChenYi ...
- [HNOI2009]有趣的数列 题解(卡特兰数)
[HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满 ...
- 2017ACM暑期多校联合训练 - Team 7 1008 HDU 6127 Hard challenge (极角排序)
题目链接 Problem Description There are n points on the plane, and the ith points has a value vali, and i ...
- ActiveMQ笔记之安装(Linux)
1. 基本概念 MQ(MessageQueue),消息队列,是一个消息接收和转发的容器. Apache ActiveMQ是一个JMS Provider实现. 2. 安装 从官网下载安装包: wget ...
- linux学习记录.1.安装
最近想了想决定开始学习linux. 在百度了一番后开始了安装,虚拟机VirtualBox,ubuntu. 基于VirtualBox虚拟机安装Ubuntu图文教程: http://blog.csdn.n ...
- flask基础之jijia2模板语言进阶(三)
前言 前面学习了jijia2模板语言的一些基础知识,接下来继续深挖jijia2语言的用法. 系列文章 flask基础之安装和使用入门(一) flask基础之jijia2模板使用基础(二) 控制语句 和 ...