BZOJ4557 JLoi2016 侦察守卫 【树形DP】*
BZOJ4557 JLoi2016 侦察守卫
Description
小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的。换句话说,游戏的地图是一棵有N个节点的树。游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不同点放置守卫的代价可能不同。现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价。
Input
第一行包含两个正整数N和D,分别表示地图上的点数和侦查守卫的视野范围。约定地图上的点用1到N的整数编号。第二行N个正整数,第i个正整数表示在编号为i的点放置侦查守卫的代价Wi。保证Wi≤1000。第三行一个正整数M,表示B神可能出现的点的数量。保证M≤N。第四行M个正整数,分别表示每个B神可能出现的点的编号,从小到大不重复地给出。接下来N–1行,每行包含两个正整数U,V,表示在编号为U的点和编号为V的点之间有一条无向边。N<=500000,D<=20
Output
仅一行一个整数,表示监视所有B神可能出现的点所需要的最小代价
Sample Input
12 2
8 9 12 6 1 1 5 1 4 8 10 6
10
1 2 3 5 6 7 8 9 10 11
1 3
2 3
3 4
4 5
4 6
4 7
7 8
8 9
9 10
10 11
11 12
Sample Output
10
题目大意是给你一棵树上有一些染了色的点
然后你可以选一些点进行标记,一个标记了的点可以覆盖距离它自己不超过d的点
标记每个点有不同的花费
求最小的覆盖所有染色点的花费
#include<bits/stdc++.h>
using namespace std;
#define N 500010
#define D 22
#define INF 0x3f3f3f3f
struct Edge{int v,next;}E[N<<1];
int head[N],tot=0;
int n,m,d,w[N];
int f[N][D],g[N][D],dp[N];
int mark[N];
void add(int u,int v){
E[++tot]=(Edge){v,head[u]};
head[u]=tot;
}
void dfs(int u,int fa){
if(mark[u])f[u][0]=g[u][0]=w[u];
for(int i=1;i<=d;i++)f[u][i]=w[u];
f[u][d+1]=INF;
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(v==fa)continue;
dfs(v,u);
for(int j=d;j>=0;j--)f[u][j]=min(f[u][j]+g[v][j],f[v][j+1]+g[u][j+1]);
for(int j=d;j>=0;j--)f[u][j]=min(f[u][j],f[u][j+1]);
g[u][0]=f[u][0];
for(int j=1;j<=d;j++)g[u][j]+=g[v][j-1];
for(int j=1;j<=d;j++)g[u][j]=min(g[u][j],g[u][j-1]);
}
g[u][d+1]=min(g[u][d+1],g[u][d]);
}
int main(){
scanf("%d%d",&n,&d);
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
scanf("%d",&m);
for(int i=1;i<=m;i++){
int x;scanf("%d",&x);
mark[x]=1;
}
for(int i=1;i<n;i++){
int u,v;scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(1,0);
printf("%d",f[1][0]);
return 0;
}
BZOJ4557 JLoi2016 侦察守卫 【树形DP】*的更多相关文章
- [BZOJ4557][JLOI2016]侦察守卫(树形DP)
首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...
- 【BZOJ4557】[JLoi2016]侦察守卫 树形DP
[BZOJ4557][JLoi2016]侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地 ...
- 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)
题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...
- BZOJ4557 JLOI2016侦察守卫(树形dp)
下称放置守卫的点为监控点.设f[i][j]为i子树中深度最大的未被监视点与i的距离不超过j时的最小代价,g[i][j]为i子树中距离i最近的监控点与i的距离不超过j且i子树内点全部被监视时的最小代价. ...
- bzoj4557 [JLoi2016]侦察守卫——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 见这位的博客:https://www.cnblogs.com/Narh/p/91403 ...
- bzoj千题计划272:bzoj4557: [JLoi2016]侦察守卫
http://www.lydsy.com/JudgeOnline/problem.php?id=4557 假设当前到了x的子树,现在是合并 x的第k个子树 f[x][j] 表示x的前k-1个子树该覆盖 ...
- 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)
洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...
- Luogu3267 [JLOI2016/SHOI2016]侦察守卫 (树形DP)
树形DP,一脸蒙蔽.看了题解才发现它转移状态与方程真不愧神题! \(f[x][y]\)表示\(x\)的\(y\)层以下的所有点都已经覆盖完,还需要覆盖上面的\(y\)层的最小代价. \(g[x][y] ...
- 动态规划(树形DP):LNOI 2016 侦察守卫
Sample Input 12 2 8 9 12 6 1 1 5 1 4 8 10 6 10 1 2 3 5 6 7 8 9 10 11 1 3 2 3 3 4 4 5 4 6 4 7 7 8 8 9 ...
随机推荐
- 09_MySQL DQL_SQL99标准中的多表查询(外连接)
# 二.外连接/* 场景:查询值在1个表中出现,在另外1个表中没有出现 特点: 0.也是两张表的字段拼接,分为主表和从表 1.外连接的结果,将显示主表中的所有记录行 如果连接字段在从表中有记录,则显示 ...
- Ubuntu安装zabbix
1.安装依赖包 安装mysql 安装nginx apt-get install php5-cli php5-cgi php5-fpm php5-mcrypt php5-mysql p ...
- Asp.Net Core 2.0 WebUploader FastDfs 文件上传 分段上传
功能点: 1. 使用.net core 2.0 实现文件上传 2. 使用webuploader实现单文件,多文件上传 3. 使用webuploader实现大文件的分段上传. 4. 使用webuploa ...
- linux ps 命令参数详解
-a 显示所有终端机下执行的进程,除了阶段作业领导者之外. a 显示现行终端机下的所有进程,包括其他用户的进程. -A 显示所有进程. -c 显示CLS和PRI栏位. c 列出进程时,显示每个进程真正 ...
- RedLock 实现分布式锁
J并发是程序开发中不可避免的问题,根据系统面向用户.功能场景的不同,并发的重视程度会有不同.从程序的角度来说,并发意味着相同的时间点执行了相同的代码,而有些情况是不被允许的,比如:转账.抢购占库存等, ...
- Nginx 启动报错 “/var/run/nginx/nginx.pid" failed”
问题: 重启虚拟机后,再次重启nginx会报错: open() "/var/run/nginx/nginx.pid" failed (2: No such file or dire ...
- 《深入理解mybatis原理1》 MyBatis的架构设计以及实例分析
<深入理解mybatis原理> MyBatis的架构设计以及实例分析 MyBatis是目前非常流行的ORM框架,它的功能很强大,然而其实现却比较简单.优雅.本文主要讲述MyBatis的架构 ...
- Vue实例的生命周期created和mounted的区别
生命周期先上图 什么是生命周期 Vue实例有一个完整的生命周期,也就是从开始创建.初始化数据.编译模板.挂载Dom.渲染→更新→渲染.卸载等一系列过程,我们称这是Vue的生命周期.通俗说就是Vue实例 ...
- UVA-10047 The Monocycle (图的BFS遍历)
题目大意:一张图,问从起点到终点的最短时间是多少.方向转动也消耗时间. 题目分析:图的广度优先遍历... 代码如下: # include<iostream> # include<cs ...
- Struts2中的包的作用描述
asm-3.3.jar作用:操作java字节码的类库包路径及主要类:未提供 asm-commons-3.3.jar作用:提供了基于事件的表现形式包路径及主要类:未提供 asm-tree-3.3.jar ...