Background

If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at the door. And unto thee shall be his desire, and thou shalt rule over him. 
    And Cain talked with Abel his brother: and it came to pass, when they were in the field, that Cain rose up against Abel his brother, and slew him. 
    And the LORD said unto Cain, Where is Abel thy brother? And he said, I know not: Am I my brother's keeper? 
    And he said, What hast thou done? the voice of thy brother's blood crieth unto me from the ground. 
    And now art thou cursed from the earth, which hath opened her mouth to receive thy brother's blood from thy hand; 
    When thou tillest the ground, it shall not henceforth yield unto thee her strength; a fugitive and a vagabond shalt thou be in the earth.

—— Bible Chapter 4

Now Cain is unexpectedly trapped in a cave with N paths. Due to LORD's punishment, all the paths are zigzag and dangerous. The difficulty of the ith path is ci.

Then we define f as the fighting capacity of Cain. Every day, Cain will be sent to one of the N paths randomly.

Suppose Cain is in front of the ith path. He can successfully take ti days to escape from the cave as long as his fighting capacity f is larger than ci. Otherwise, he has to keep trying day after day. However, if Cain failed to escape, his fighting capacity would increase ci as the result of actual combat. (A kindly reminder: Cain will never died.)

As for ti, we can easily draw a conclusion that ti is closely related to ci. Let's use the following function to describe their relationship:

After D days, Cain finally escapes from the cave. Please output the expectation of D.

Input

The input consists of several cases. In each case, two positive integers N and f (n ≤ 100, f ≤ 10000) are given in the first line. The second line includes N positive integers ci (ci ≤ 10000, 1 ≤ i ≤ N)

Output

For each case, you should output the expectation(3 digits after the decimal point).

Sample Input

3 1
1 2 3

Sample Output

6.889

题意:

师傅被妖怪抓走了。有n个妖怪,每个妖怪有一个固定的战斗力c[],师傅也有一个初始战斗力f0。每天,师傅会随机选择一个妖怪决斗,如果打得赢ft>c[],就可以逃出去,逃出去要t[]天,毕竟超人不会飞;否则,师傅会不甘心,当天他会拿出秘籍练功,将自己变强,f(t+1)=f(t)+c[],第二天寻找下一次机会。问师傅能够逃脱可怕的妖怪,继续追求去印度吃手抓饼的梦想的天数的数学期望day。

思路:

设dp[F]是战斗力为F时,逃离的天数期望。(答案是dp[f])。则有公式。

dp[F]= Σ 1/n * t[i]              ,F>c[[i]

+∑ 1/n * dp[F+c[i]]    ,F<=c[i]

经验:

数学期望题目大多数需要逆推。 此处逆推的方式是记忆化。而且此题,F是单增的,而且有很明显的边界,即F达到大于最大的C[]的时候,就不会再向下面搜索了,所以记忆化搜索很有效。实在想不出顺推的DP,就记忆化逆推吧。不然DP烧脑壳。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
const double P=(1.0+sqrt(5.0))/2.0;
const int maxn=;
int c[maxn],t[maxn],n,f;double dp[maxn];
double dfs(int F)
{
if(dp[F]>) return dp[F];
for(int i=;i<=n;i++){
if(F>c[i]) dp[F]+=1.0*t[i];
else dp[F]+=dfs(F+c[i])+1.0;
}
dp[F]=dp[F]/(1.0*n);return dp[F];
}
int main()
{
while(~scanf("%d%d",&n,&f)){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
scanf("%d",&c[i]);
t[i]=(int)(1.0*c[i]*c[i]*P);
}dfs(f);
printf("%.3lf\n",dp[f]);
}return ;
}

ZOJ3640Help Me Escape(师傅逃亡系列•一)(数学期望||概率DP)的更多相关文章

  1. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  2. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  3. SGU495Kids and Prizes(数学期望||概率DP||公式)

    495. Kids and Prizes Time limit per test: 0.25 second(s) Memory limit: 262144 kilobytes input: stand ...

  4. HDU4035 Maze(师傅逃亡系列•二)(循环型 经典的数学期望)

    When wake up, lxhgww find himself in a huge maze. The maze consisted by N rooms and tunnels connecti ...

  5. HDU3853LOOPS (师傅逃亡系列•三)(基础概率DP)

    Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka sa ...

  6. 【NOIP模拟赛】书 数学+期望概率

    biubiu~~~ 对于这道傻题.........我考场上退了一个多小时才推出来这个东西是排列...........然后我打的dfs效率n!logInf正好n=9是最后一个能过的数结果前三个点的n全是 ...

  7. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  8. 【POJ】2096 Collecting Bugs(数学期望)

    题目 传送门:QWQ 分析 数学期望 用$ dp[i][j] $表示发现了在$ j $个子系统里面发现了$ i $个bug到$ s $个子系统里面发现了$ n $个bug需要的期望天数. $ dp[0 ...

  9. ZOJ3640-Help Me Escape

    Help Me Escape Time Limit: 2 Seconds      Memory Limit: 32768 KB Background     If thou doest well, ...

随机推荐

  1. mathematical method

    mathematical method 曲线拟合 指数 \(lnY = lna + bX\) 对数 \(Y = blnX + a\) 幂函数 \(lgY=lga+blgX\) 多元线性回归模型 回归分 ...

  2. 远程线程注入shellcode笔记

    #include "stdafx.h" #include <windows.h> #include <stdio.h> char shellcode[] = ...

  3. Lucene 更新、删除、分页操作以及IndexWriter优化

    更新操作如下: 注意:通过lukeall-1.0.0.jar 查看软件,我们可以看到,更新其实是先删除在插入, 前面我们知道索引库中有两部分的内容组成,一个是索引文件,另一个是目录文件, 目前我们更新 ...

  4. 通过spring整合activeMQ实现jms实例

    写的很详细 http://blog.csdn.net/leonardo9029/article/details/43154385

  5. vue-cli Uncaught SyntaxError: Use of const in strict mode解决办法

    vue-cli初始化项目,开发环境运行项目使用了webpack-dev-server,而最新版本webpack-dev-server@2.9.1运行项目时,并不能成功的把es6语法转化为es5,所以在 ...

  6. C++函数参数中的省略号

    本文基本是转载自:https://blog.csdn.net/think12/article/details/5785066 另一篇看到写得很好的博客:https://www.cnblogs.com/ ...

  7. IOS-APP主流UI框架结构

    一.简单示例 说明:使用APP主流UI框架结构完成简单的界面搭建 搭建页面效果:                                二.搭建过程和注意点 1.新建一个项目,把原有的控制器删 ...

  8. OLT配置说明

    MA5680T>enable  进入特权模式   MA5680T#config  进入配置模式 MA5680T(config)#display current-configuration sim ...

  9. 【hive】多表插入

    from or_table insert overwrite table1 name1 select … insert into table2 name2 select … 注意:select 后边不 ...

  10. kappa系数在大数据评测中的应用

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7091315.html 前言 最近打算把翻译质量的人工评测好 ...