Loj 538 递推数列
Loj 538 递推数列
出题人:这题提高难度吧.于是放在了%你赛的 \(D1T2\) .
递推式为 \(a_i=k*a_{i-1}+a_{i-2}\) , 注意到 \(k\in \mathbb{N_+}\) ,容易发现一个比较显然的性质:
若 \(a_i>a_{i-1}\geq 0\) , 或者 \(a_i<a_{i-1}\leq 0\) ,则该数列在第 \(i-1\) 项后单调上升或单调下降.
基于这个性质,一个比较自然的想法是,一直爆算 \(a_i\) ,使得数列 \(a\) 单调后退出,再利用单调性来算答案.
这样搞能得到多少分? \(20?\ 25?\ 30?\) 万一被构造数据卡到很久都进不了单调咋办?
事实上,这样计算可以获得 \(100\) 分的好成绩.借助下面这张图来分析,比例可能不太真实,意会即可.
- 假定在 \(i=pos\) 处第一次满足 \(a_i>a_{i-1}\geq 0\) 或 \(a_i<a_{i-1}\leq 0\).那么 \(pos-1\) 之前的项都是正负交替出现的.否则若有 \(i<pos-1,0<a_i<a_{i-1}\) ,则 \(a_{i+1}>a_i>0\) , \(i+1<pos\) , 应是第一个找到的 \(pos\) ,矛盾.
- 那么记 \(b_i=|a_i|\) ,则有 \(\forall\ i\in [2,pos-1),b_i=-kb_{i-2}+b_{i-1}.\),且 \(b\) 单调递减.
- 移项变形,得 \(b_{i-2}=kb_{i-1}+b_i\geq(k+1)b_i\). 又因 \(k\in \mathbb{N_+}\) ,可得 \(pos\leq 2log_{k+1}|a_0|\) .
- 类似可以证明单调后在 \(O(loga)\) 个数内,绝对值将超过前面( \(S_1\) 内元素)的绝对值.
- 于是,整个算法的时间复杂度为 \(O(nloga)\) .实现起来细节比较多.
有时, \(yy\) 出一个做法或许并不难,难的是判断这个做法是否可行...
Loj 538 递推数列的更多相关文章
- The Nth Item 南昌网络赛(递推数列,分段打表)
The Nth Item \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 给出递推式,求解每次 \(F[n]\) 的值,输出所有 ...
- 九度OJ 1081:递推数列 (递归,二分法)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6194 解决:864 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= 2. 求第 ...
- HDU4565 So Easy! —— 共轭构造、二阶递推数列、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4565 So Easy! Time Limit: 2000/1000 MS (Java/Others) Memory L ...
- 九度OJ 1081 递推数列 -- 矩阵二分乘法
题目地址:http://ac.jobdu.com/problem.php?pid=1081 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- Re.常系数齐次递推
前言 嗯 我之前的不知道多少天看这个的时候到底在干什么呢 为什么那么.. 可能大佬们太强的缘故 最后仔细想想思路那么的emmm 不说了 要落泪了 唔唔唔 前置 多项式求逆 多项式除法/取模 常 ...
- [洛谷P4723]【模板】线性递推
题目大意:求一个满足$k$阶齐次线性递推数列$a_i$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n-i}$ 题解:线性齐次递推,先见洛谷题解, ...
随机推荐
- [Vue]组件——实现动态组件:keep-alive的使用
1.在app.vue中用一个 <keep-alive> 元素将其动态组件包裹起来: keepAlive为true时,第一次被创建的时候缓存下来,为false时,不会缓存 <keep- ...
- binding与属性
Text="{Binding Path=SearchKeyWord, Mode=TwoWay,UpdateSourceTrigger=PropertyChanged}" 将“源”显 ...
- JSON的多样格式
//JSON – Properties 方便前台列表显示 [{"年月":2002.01,"北京分公司":2214688,"河北分公司":3 ...
- Docker总结
Docker总结 一.Docker简介 1.问题:为什么会有docker出现 一款产品从开发到上线,从操作系统,到运行环境,再到应用配置.作为开发+运维之间的协作我们需要关心很多东西,这也是很多互联网 ...
- IOS-每个程序员的编程之路上都应该看这11本书
国外知名网站stackoverflow上有一个问题调查: 哪本书是对程序员最有影响.每个程序员都该阅读的书?,这个调查已历时两年,目前为止吸引了153,432人访问,读者共推荐出了478本书(还在增加 ...
- BGP&RIP
策略路由是2000之前 如果不通检查是否有相互影响的策略 BGP 25端 查看 25是上端起lan 地址是172.100.1.254 互联158是下端起wan 172.100.1.158 25的内 ...
- laravel中新建文件并保存数据到文件中
//base_path()获取当前的绝对路径 $path=base_path().'\config\web.php'; $str='abcdefg'; //要声明的字符串 file_put_conte ...
- ASP.NET MVC TryUpdateModel 更新model
总结参考:原文地址http://www.it165.net/pro/html/201305/5724.html TryUpdateModel (model)默认将view页面上form表单中的字段与m ...
- 什么是Quartz?
什么是Quartz Quartz是一个开源的作业调度框架,Quartz根据用户设定的时间规则来执行作业,使用场景:在平时的工作中,估计大多数都做过轮询调度的任务,比如定时轮询数据库同步,定时邮件通知. ...
- H5页面下拉加载更多(实用版)
近期在做一个H5网站,需要下拉加载更多产品列表的功能.百度搜索了好久,什么说法都有,什么插件都有. 醉了.基本上每一个能直接拿来用的. 最后发现: 1.dropload.js 插件 还可以,但是 ...