In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got ai,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?

Input

There are multiple test cases. Please process till EOF. 

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

Output

For each case, output a n,m mod 10000007.

Sample Input

1 1
1
2 2
0 0
3 7
23 47 16

Sample Output

234
2799
72937

这个题的难点在于如何去构造矩阵,我们一般的构造矩阵是一维递推式,这个我们也可以通过改变一下就我们让第一行为23,最后一行为3,然后根据递推关系判断

如图:

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath>
const long long mod=10000007; const int maxn=1e5+5;
typedef long long ll;
using namespace std;
int n,m;
struct mat
{
ll a[15][15];
}; mat Mul(mat a,mat b)
{
mat ans;
memset(ans.a,0,sizeof(ans.a));
for(int t=0;t<=n+1;t++)
{
for(int j=0;j<=n+1;j++)
{
for(int k=0;k<=n+1;k++)
{
ans.a[t][j]=(ans.a[t][j]+a.a[t][k]*b.a[k][j])%mod;
}
}
}
return ans;
}
mat anss;
ll quickPow(int k)
{
mat res;
memset(res.a,0,sizeof(res.a));
for(int t=0;t<=n;t++)
{
res.a[t][0]=10;
}
for(int t=0;t<=n;t++)
{
for(int j=1;j<=t;j++)
{
res.a[t][j]=1;
}
res.a[t][n+1]=1;
}
for(int t=0;t<=n;t++)
{
res.a[n+1][t]=0;
}
res.a[n+1][n+1]=1;
while(k)
{
if(k&1)
{
anss=Mul(res,anss);
}
res=Mul(res,res);
k>>=1;
} return anss.a[n][0]%mod;
} int main()
{ while(cin>>n>>m)
{
memset(anss.a,0,sizeof(anss.a));
anss.a[0][0]=23;
for(int t=1;t<=n;t++)
{
scanf("%lld",&anss.a[t][0]);
}
anss.a[n+1][0]=3;
cout<<quickPow(m)<<endl; }
return 0;
}

233 Matrix(矩阵快速幂+思维)的更多相关文章

  1. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  2. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  3. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  4. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  5. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  6. fzu 1911 Construct a Matrix(矩阵快速幂+规律)

    题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只 ...

  7. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  8. UVa 11149 Power of Matrix 矩阵快速幂

    题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...

  9. Construct a Matrix (矩阵快速幂+构造)

    There is a set of matrixes that are constructed subject to the following constraints: 1. The matrix ...

随机推荐

  1. XML(子节点序列化反序列对象)读写

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  2. Visual Studio 2015 开发 ASP.NET 5 有何变化?(转)

    出处:http://www.cnblogs.com/xishuai/p/visual-studio-2015-preview-asp-net-5-change.html 本篇博文目录: ASP.NET ...

  3. QT之Variant

    QVariant识别类型的注册 QVariant识别类型的注册 QVariant为一个万能的数据类型--可以作为许多类型互相之间进行自动转换.将C++变为弱数据类型成为可能--也是许多控件中用户定义数 ...

  4. 前端福利之改变placeholder颜色的方法(转)

    之前拿到一个设计图,Placeholder是白色的,所以就查看了一下改变placeholder的方法: input::-webkit-input-placeholder { /* WebKit bro ...

  5. LightOJ 1268 Unlucky Strings (KMP+矩阵快速幂)

    题意:给出一个字符集和一个字符串和正整数n,问由给定字符集组成的所有长度为n的串中不以给定字符串为连续子串的有多少个? 析:n 实在是太大了,如果小的话,就可以用动态规划做了,所以只能用矩阵快速幂来做 ...

  6. Linux中找不到service命令

    解决方法: 1.su -l root su root:的话只是将当前身份转为root,用户shell并没有改变.所以有些系统命令不能使用.  su -或者su -l或者su -l root,可以完全的 ...

  7. 移动开发iOS&Android对比学习--异步处理

    在移动开发里很多时候需要用到异步处理.Android的主线程如果等待超过一定时间的时候直接出现ANR(对不熟悉Android的朋友这里需要解释一下什么叫ANR.ANR就是Application Not ...

  8. 视频分析(MATLAB)——MV分镜头图像分类

    引言:一个MV视频是有很多帧图像组合而成的,而一支MV是有多少个分镜头场景组合而成的呢?由MATLAB如何自动实现? 以<Love You Like A Love Song>的MV为例(这 ...

  9. UML的常用关系及其符号表示

    原创 UML的常用关系及其符号表示 一.实现关系 通常是一个类实现一个接口 符号表示: 二.泛化关系 通常是一个类继承另外一个类 符号表示: 三.依赖关系 通常是一个类里面的方法的参数类型是另一个类 ...

  10. [leetcode] 3. Pascal's Triangle

    第三道还是帕斯卡三角,这个是要求正常输出,题目如下: Given numRows, generate the first numRows of Pascal's triangle. For examp ...