Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
3 seconds
256 megabytes
standard input
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6
In the first example:
;
;
.
So the answer is 2 + 1 + 2 = 5.
思路:给你n条线段,把线段放进数轴每次处理每个点的贡献,端点另外算;
给两组数据
2 1
1 3
3 4
2 1
1 3
5 6
#include<bits/stdc++.h>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=2e5+,M=1e6+,inf=1e9,mod=1e9+;
struct is
{
ll l,r;
}a[N];
ll poww(ll a,ll n)//快速幂
{
ll r=,p=a;
while(n)
{
if(n&) r=(r*p)%mod;
n>>=;
p=(p*p)%mod;
}
return r;
}
ll flag[N*];
ll lisan[N*];
ll sum[N*];
ll zz[N*];
int main()
{
ll x,y,z,i,t;
scanf("%I64d%I64d",&x,&y);
int ji=;
for(i=;i<x;i++)
{
scanf("%I64d%I64d",&a[i].l,&a[i].r);
flag[ji++]=a[i].l;
flag[ji++]=a[i].l+;
flag[ji++]=a[i].r;
flag[ji++]=a[i].r+;
}
sort(flag+,flag+ji);
ji=unique(flag+,flag+ji)-(flag+);
int h=;
for(i=;i<=ji;i++)
lisan[h++]=flag[i];
memset(flag,,sizeof(flag));
for(i=;i<x;i++)
{
int l=lower_bound(lisan+,lisan+h,a[i].l)-lisan;
int r=lower_bound(lisan+,lisan+h,a[i].r)-lisan;
flag[l]++;
flag[r+]--;
}
for(i=;i<=h;i++)
sum[i]=sum[i-]+flag[i];
ll ans=;
memset(zz,,sizeof(zz));
zz[y]=;
for (i=y+;i<=*x;i++) zz[i]=((zz[i-]*i%mod)*poww(i-y,mod-))%mod;
for(i=;i<h;i++)
{
int zh=min(sum[i],sum[i-]);
ans+=zz[zh]*(lisan[i]-lisan[i-]-);
ans+=zz[sum[i]];
ans%=mod;
}
printf("%I64d\n",ans);
return ;
}
Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元的更多相关文章
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- Codeforces Round #410 (Div. 2)C. Mike and gcd problem
题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2)A. Mike and Cellphone
A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- Flask用Flask-SQLAlchemy连接MySQL
安装 pip3 install Flask-SQLAlchemy 测试环境目录结构 settings.py DIALECT = 'mysql' DRIVER = 'pymysql' USERNAME ...
- odoo学习记录1
1. odoo通过ORM(对象关系映射)实现底层数据与上层逻辑到关联,保证数据存储的安全性和使用上到便利性. 2. odoo由模块组成,每个模块包含:Bussiness Object, Data, W ...
- python 学习笔记(十四)有依赖关系的接口开发
接口开发中存在很多有依赖关系的接口,例如:BBS中发帖的时候就需要进行校验用户是否登录,那么此时发帖的接口就与用户登录接口有依赖关系.在发帖时就需要先获取用户的session,与当前登录用户进行校验对 ...
- #运算符、不同的指针类型、数组和指针、指针运算、堆、栈、静态区、只读区、下标VS指针
#运算符:用于在预编译期将宏参数转换为字符串 #define CONVERS(x) #x //注:没用双引号包括. 不同类型的指针占用的内存空间大小相同. 局部变量 定义: a[5]; 打印a[ ...
- linux根文件系统 /etc/resolv.conf 文件详解(转)
大家好,今天51开源给大家介绍一个在配置文件,那就是/etc/resolv.conf.很多网友对此文件的用处不太了解.其实并不复杂,它是DNS客户机配置文件,用于设置DNS服务器的IP地址及DNS域名 ...
- Xcode插件开发案例教程
引言 在平时开发过程中我们使用了很多的Xcode插件,虽然官方对于插件制作没有提供任何支持,但是加载三方的插件,默认还是被允许的.第三方的插件,存放在 ~/Library/Application Su ...
- Django:学习笔记(8)——视图
Django:学习笔记(8)——视图
- 1-CommonJs
诞生背景JS没有模块系统.标准库较少.缺乏包管理工具:前端端没有模块化编程还可以,因为前端逻辑没那么复杂,可以工作下去,在服务器端逻辑性那么强必须要有模块为了让JS可以在任何地方运行,以达到Java. ...
- JavaScript-dom4 date string 事件绑定
内置date <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- 解决日志unicode编码问题
Xcode打印日志里如果有汉字,有时会以Unicode编码形式展示,另需工具转码,降低了开发的效率,未解决这一问题,简便的解决方法是 pod 'HYBUnicodeReadable' 这个第三方库很好 ...