Tree Recovery

Description

Little Valentine liked playing with binary trees very much. Her favorite game was constructing randomly looking binary trees with capital letters in the nodes. 
This is an example of one of her creations:

                                               D

/ \

/ \

B E

/ \ \

/ \ \

A C G

/

/

F

To record her trees for future generations, she wrote down two strings for each tree: a preorder traversal (root, left subtree, right subtree) and an inorder traversal (left subtree, root, right subtree). For the tree drawn above the preorder traversal is DBACEGF and the inorder traversal is ABCDEFG. 
She thought that such a pair of strings would give enough information to reconstruct the tree later (but she never tried it).

Now, years later, looking again at the strings, she realized that reconstructing the trees was indeed possible, but only because she never had used the same letter twice in the same tree. 
However, doing the reconstruction by hand, soon turned out to be tedious. 
So now she asks you to write a program that does the job for her!

Input

The input will contain one or more test cases. 
Each test case consists of one line containing two strings preord and inord, representing the preorder traversal and inorder traversal of a binary tree. Both strings consist of unique capital letters. (Thus they are not longer than 26 characters.) 
Input is terminated by end of file.

Output

For each test case, recover Valentine's binary tree and print one line containing the tree's postorder traversal (left subtree, right subtree, root).

Sample Input

DBACEGF ABCDEFG
BCAD CBAD

Sample Output

ACBFGED
CDAB

Source

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define ll __int64
#define mod 1000000007
#define pi (4*atan(1.0))
const int N=1e5+,M=1e6+,inf=1e9+;
char a[],b[];
char ans[N];
void dfs(char *a,char *b,char *c,int len)
{
if(len<=)
return;
int n=strlen(b),pos=;
for(int i=;i<n;i++)
{
if(b[i]==a[])
{
pos=i;
break;
}
}
int l=pos;
int r=len-pos-;
dfs(a+,b,c,l);
dfs(a+l+,b+l+,c+l,r);
c[len-]=a[];
}
int main()
{
int x,y,z,i,t;
while(~scanf("%s%s",a,b))
{
x=strlen(a);
dfs(a,b,ans,x);
ans[x]=;
cout<<ans<<endl;
}
return ;
}

poj 2255 Tree Recovery 分治的更多相关文章

  1. POJ 2255. Tree Recovery

    Tree Recovery Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11939   Accepted: 7493 De ...

  2. POJ 2255 Tree Recovery 树的遍历,分治 难度:0

    http://poj.org/problem?id=2255 #include<cstdio> #include <cstring> using namespace std; ...

  3. poj 2255 Tree Recovery(求后序遍历,二叉树)

    版权声明:本文为博主原创文章,未经博主同意不得转载.vasttian https://blog.csdn.net/u012860063/article/details/37699219 转载请注明出处 ...

  4. Poj 2255 Tree Recovery(二叉搜索树)

    题目链接:http://poj.org/problem?id=2255 思路分析:根据先序遍历(如DBACEGF)可以找出根结点(D),其后为左右子树:根据中序遍历(如ABCDEFG),已知根结点(D ...

  5. POJ 2255 Tree Recovery && Ulm Local 1997 Tree Recovery (二叉树的前中后序遍历)

    链接:poj.org/problem?id=2255 本文链接:http://www.cnblogs.com/Ash-ly/p/5463375.html 题意: 分别给你一个二叉树的前序遍历序列和中序 ...

  6. POJ 2255 Tree Recovery 二叉树的遍历

    前序和中序输入二叉树,后序输出二叉树:核心思想只有一个,前序的每个根都把中序分成了两部分,例如 DBACEGF ABCDEFG D把中序遍历的结果分成了ABC和EFG两部分,实际上,这就是D这个根的左 ...

  7. POJ 2255 Tree Recovery(根据前序遍历和中序遍历,输出后序遍历)

    题意:给出一颗二叉树的前序遍历和中序遍历的序列,让你输出后序遍历的序列. 思路:见代码,采用递归. #include <iostream> #include <stdio.h> ...

  8. POJ 2255 Tree Recovery 二叉树恢复

    一道和Leetcode的一道题目基本上一样的题目. 给出前序遍历和中序遍历序列,要求依据这些信息恢复一颗二叉树的原貌,然后按后序遍历序列输出. Leetcode上有给出后序和中序,恢复二叉树的. 只是 ...

  9. POJ 2255 Tree Recovery——二叉树的前序遍历、后序遍历、中序遍历规则(递归)

    1.前序遍历的规则:(根左右) (1)访问根节点 (2)前序遍历左子树 (3)前序遍历右子树 对于图中二叉树,前序遍历结果:ABDECF 2.中序遍历的规则:(左根右) (1)中序遍历左子树 (2)访 ...

随机推荐

  1. 雨痕 的《Python学习笔记》--附脑图(转)

    原文:http://www.pythoner.com/148.html 近日,在某微博上看到有人推荐了 雨痕 的<Python学习笔记>,从github上下载下来看了下,确实很不错. 注意 ...

  2. HTML容易遗忘内容(一)

    HTML基础语法: <html> <head> <tiltle>Hello</tiltle> </head> <body bgcolo ...

  3. 一个父亲的教育札记——leo鉴书58

    由于年纪和工作的原因.绝大部分小说我都不看--没空,如今小说写的也太空.但对文笔有提高的文章我是非常关注的,知道韩寒不是由于<三重门>(我报纸也不怎么看).而是此前编辑感觉我文笔差.   ...

  4. C++继承模型

    在C++继承模型中,一个派生类对象表现出来的东西,是其自己的成员加上其基类成员的总和.但这些成员怎样摆放,标准并未强制规定.一般而言,低地址放基类子对象,高地址放派生类对象. 以下从四个部分讨论C++ ...

  5. genymotion——VT-x is not available (VERR_VMX_NO_VMX) 的解决方案

    进入虚拟机设置页面

  6. sublime2常用插件

    Package Control 1. 安装方法 • 下载地址:https://sublime.wbond.net/Package%20Control.sublime-package • 将下载下来的P ...

  7. js null, undefined, NaN, ‘’, false, 0, ==, === 全验证

    <html> <head> <meta charset="utf-8" /> </head> <body> <in ...

  8. Linux系统——sed命令

    sed命令精讲 cat工作原理 cat命令只想文件,把文件打开后,将文件中所有内容一次性读到内存中,从内存里一次性输出到屏幕上,此时可能存在内存装不下的情况,因此cat命令只能查看小文件内容,不能读取 ...

  9. 获取一个表单字段中多条数据并转化为json格式

    如图需要获取下面两个li标签里面的数据,然后传给后台:而后台接收的数据格式是json的,所以需要把两个li里面的信息转化为以下格式的. {recieverName:小红,recieverPhone:1 ...

  10. PKU 1655 Balancing Act(树+树的重心)

    #include<cstdio> #include<cstring> #include<algorithm> #define maxn 20005 using na ...