watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaHpxMjAwODExMjExMDc=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

(图片from http://www.cnblogs.com/zhangchaoyang/articles/2624882.html)

假设x是二维的,那么上述公式为:

=cov(x0,x1),是x1和x0的协方差。

单高斯分布

假设特征x是一维(仅仅考虑点的x坐标)的,高斯分布是:(from这篇博客

假设特征是二维(x坐标和y坐标,意义能够是身高和体重)的,聚类的效果应该是:

在上面两张图中。我们用EM—GMM算法做聚类。用的是单个高斯函数描写叙述一个类别(男一个。女一个)。

如用一维高斯描写叙述了男生和女生的身高分布。

高斯混合分布

可是假设统计的这些身高同一时候有荷兰人(高)和刚果人(矮),这个单高斯模型会出什么问题?

显然用一个高斯分布来描写叙述男女身高是不行了,这样就须要混合高斯模型。如:

【π表示各种人(荷兰男人、荷兰女人、刚果男人、刚果女人)所占的比例】

如今有一批男人身高数据(荷兰男人+刚果男人)。我们能够參照这篇博客的EM方法得到

同理。能够得到女人身高的双高斯分布。

这样。用混合双高斯分布来推断 “荷兰美眉” 的性别就对了。【即将“荷兰美眉”的特征向量X带入Gm和Gf求概率】

混合高斯模型GuassMixtureModel

假设这时候中国人、美国人也混入这批身高数据,二维的高斯模型将不足以刻画数据分布,须要考虑使用4高斯混合分布。

当GMM中的高斯分布越多,对数据的刻画将越仔细(当然须要的训练数据就很多其它,计算量也会更大)。

GMM高斯混合模型 学习(2)的更多相关文章

  1. GMM高斯混合模型学习笔记(EM算法求解)

    提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一 ...

  2. K-Means(K均值)、GMM(高斯混合模型),通俗易懂,先收藏了!

    1. 聚类算法都是无监督学习吗? 什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组.给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组.理论上,同一组中的数据点应该具有相似 ...

  3. opencv::GMM(高斯混合模型)

    GMM方法概述:基于高斯混合模型期望最大化. 高斯混合模型 (GMM) 高斯分布与概率密度分布 - PDF 初始化 初始化EM模型: Ptr<EM> em_model = EM::crea ...

  4. EM算法和高斯混合模型GMM介绍

    EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...

  5. 高斯混合模型GMM与EM算法的Python实现

    GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...

  6. 高斯混合模型参数估计的EM算法

    # coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...

  7. 贝叶斯来理解高斯混合模型GMM

    最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...

  8. 高斯混合模型(GMM) - 混合高斯回归(GMR)

    http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲 ...

  9. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

随机推荐

  1. mui实现列表的下拉刷新上拉加载

    1.引入mui控件的js文件和css样式文件 <link rel="stylesheet" href="css/mui.min.css"> < ...

  2. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  3. BZOJ 1040 ZJOI 2008 骑士 树形DP

    题意: 有一些战士,他们有战斗力和讨厌的人,选择一些战士,使他们互不讨厌,且战斗力最大,范围1e6 分析: 把战士看作点,讨厌的关系看作一条边,连出来的是一个基环树森林. 对于一棵基环树,我们找出环, ...

  4. Ubuntu下gcc多版本共存和版本切换

    https://my.oschina.net/u/2306127/blog/538139 摘要: Ubuntu系统使用的gcc版本随着发布版本的不同而不同,在编译android系统时不同的版本推荐用不 ...

  5. 一步一步部署WPF浏览器应用程序

    WPF浏览器应用程序与Silverlight,Asp.net相比,同是发布到服务器,在IE中运行.WPF浏览器应用程序部署起来却相对困难. 相信很多朋友在第一次部署WPF浏览器应用程序时,都遇到&qu ...

  6. js数组的使用

    1.创建: var arr=Array(); 2.遍历: for(var arg in arr){ alert(arr[arg]); } 3.追加 arr1.concat(arr2) 4.元素删除 d ...

  7. 实现windows操作系统和VB下Linux虚拟操作系统相互传取文件方式总结

    在windows上执行虚拟机跑的是Linux的操作系统,怎样才干在不同的操作系统之间传递文件呢? 这是本人切身体会到的,假设你没有好的方法的话.确实非常痛苦.下面是我个人的方法总结: 方法一.很好用的 ...

  8. iOS开发之UITextField 左侧设置小图标 leftview

    设置用户登录的时候,这个是避免不了,实现方法很多,我个人主张,系统有提供就使用系统,一来方便,二来运行效率高 Paste_Image.png 实现代码如下: pwdTextField.placehol ...

  9. MERGE新特性(UPDATE WHERE,DELETE WHERE,INSERT WHERE)

    MERGE语句是Oracle9i新增的语法,用来合并UPDATE和INSERT语句.通过MERGE语句,根据一张表或子查询的连接条件对另外一张表进行查询,连接条件匹配上的进行UPDATE,无法匹配的执 ...

  10. C#类和结构体的异同点简单总结

    类和结构的异同点?异:  1.关键字不同 一个是class,一个是struct  2.类型不同,一个是引用类型,一个是值类型(一个堆区,一个栈区)        3.成员不同,结构体没有默认的构造函数 ...