watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaHpxMjAwODExMjExMDc=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

(图片from http://www.cnblogs.com/zhangchaoyang/articles/2624882.html)

假设x是二维的,那么上述公式为:

=cov(x0,x1),是x1和x0的协方差。

单高斯分布

假设特征x是一维(仅仅考虑点的x坐标)的,高斯分布是:(from这篇博客

假设特征是二维(x坐标和y坐标,意义能够是身高和体重)的,聚类的效果应该是:

在上面两张图中。我们用EM—GMM算法做聚类。用的是单个高斯函数描写叙述一个类别(男一个。女一个)。

如用一维高斯描写叙述了男生和女生的身高分布。

高斯混合分布

可是假设统计的这些身高同一时候有荷兰人(高)和刚果人(矮),这个单高斯模型会出什么问题?

显然用一个高斯分布来描写叙述男女身高是不行了,这样就须要混合高斯模型。如:

【π表示各种人(荷兰男人、荷兰女人、刚果男人、刚果女人)所占的比例】

如今有一批男人身高数据(荷兰男人+刚果男人)。我们能够參照这篇博客的EM方法得到

同理。能够得到女人身高的双高斯分布。

这样。用混合双高斯分布来推断 “荷兰美眉” 的性别就对了。【即将“荷兰美眉”的特征向量X带入Gm和Gf求概率】

混合高斯模型GuassMixtureModel

假设这时候中国人、美国人也混入这批身高数据,二维的高斯模型将不足以刻画数据分布,须要考虑使用4高斯混合分布。

当GMM中的高斯分布越多,对数据的刻画将越仔细(当然须要的训练数据就很多其它,计算量也会更大)。

GMM高斯混合模型 学习(2)的更多相关文章

  1. GMM高斯混合模型学习笔记(EM算法求解)

    提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一 ...

  2. K-Means(K均值)、GMM(高斯混合模型),通俗易懂,先收藏了!

    1. 聚类算法都是无监督学习吗? 什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组.给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组.理论上,同一组中的数据点应该具有相似 ...

  3. opencv::GMM(高斯混合模型)

    GMM方法概述:基于高斯混合模型期望最大化. 高斯混合模型 (GMM) 高斯分布与概率密度分布 - PDF 初始化 初始化EM模型: Ptr<EM> em_model = EM::crea ...

  4. EM算法和高斯混合模型GMM介绍

    EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...

  5. 高斯混合模型GMM与EM算法的Python实现

    GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...

  6. 高斯混合模型参数估计的EM算法

    # coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...

  7. 贝叶斯来理解高斯混合模型GMM

    最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...

  8. 高斯混合模型(GMM) - 混合高斯回归(GMR)

    http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲 ...

  9. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

随机推荐

  1. 【BZOJ 4180】 4180: 字符串计数 (SAM+二分+矩阵乘法)

    4180: 字符串计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 164  Solved: 75 Description SD有一名神犇叫做Oxe ...

  2. 【BZOJ 2306】 2306: [Ctsc2011]幸福路径 (倍增floyd)

    2306: [Ctsc2011]幸福路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 437 Description 有向 ...

  3. asp.net mvc中DropDownList

    asp.net mvc中DropDownList的使用. 下拉列表框 以分为两个部分组成:下拉列表和默认选项 DropDownList扩展方法的各个重载版本基本上都会传递到这个方法上:   publi ...

  4. Codeforces Round #305 (Div. 1) A. Mike and Frog 暴力

     A. Mike and Frog Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/547/pr ...

  5. Sencha Touch开发环境搭建及ext插件Spket安装

    第一步:JAVA SDK(JDK)的安装 以去问百度下载JDK,也可以到官方下载JDK. 下载地址: http://www.oracle.com/technetwork/java/javase/dow ...

  6. 配置Maven环境变量与Intelij IDE配置Maven

    Maven有什么用? 以前我们导入第三方jar包的流程是什么?一般是download,然后copy到项目中,然后依赖(library)项目,最后被我们使用. 通俗的说,就是不用我们自己去downloa ...

  7. CC1150 针对低功耗无线应用设计的高度集成多通道射频发送器

    Low Power Sub-1 GHz RF Transmitter 单片低成本低能耗 RF 发送芯片 应用 极低功率 UHF 无线发送器 315/433/868 和 915MHz ISM/SRD 波 ...

  8. 富文本编辑器、日期选择器、软件天堂、防止XSS攻击、字体icon、转pdf

    [超好用的日期选择器] Layui:http://www.layui.com/laydate/ 备注:日期选择器,用过很多很多,自己也写过一些:相信这个简单而又不简单的选择器,能够给你多些美好的时光 ...

  9. this与JavaScrip中的四种调用模式

    this是什么 方法调用模式 构造器调用模式 函数调用模式 apply/call模式 this是什么 —In most languages, ‘this’ is a reference to the ...

  10. Android PopupWindow做的分享界面

    package com.tq.mbaexam.view; import java.util.ArrayList; import java.util.LinkedHashMap; import java ...