watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaHpxMjAwODExMjExMDc=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

(图片from http://www.cnblogs.com/zhangchaoyang/articles/2624882.html)

假设x是二维的,那么上述公式为:

=cov(x0,x1),是x1和x0的协方差。

单高斯分布

假设特征x是一维(仅仅考虑点的x坐标)的,高斯分布是:(from这篇博客

假设特征是二维(x坐标和y坐标,意义能够是身高和体重)的,聚类的效果应该是:

在上面两张图中。我们用EM—GMM算法做聚类。用的是单个高斯函数描写叙述一个类别(男一个。女一个)。

如用一维高斯描写叙述了男生和女生的身高分布。

高斯混合分布

可是假设统计的这些身高同一时候有荷兰人(高)和刚果人(矮),这个单高斯模型会出什么问题?

显然用一个高斯分布来描写叙述男女身高是不行了,这样就须要混合高斯模型。如:

【π表示各种人(荷兰男人、荷兰女人、刚果男人、刚果女人)所占的比例】

如今有一批男人身高数据(荷兰男人+刚果男人)。我们能够參照这篇博客的EM方法得到

同理。能够得到女人身高的双高斯分布。

这样。用混合双高斯分布来推断 “荷兰美眉” 的性别就对了。【即将“荷兰美眉”的特征向量X带入Gm和Gf求概率】

混合高斯模型GuassMixtureModel

假设这时候中国人、美国人也混入这批身高数据,二维的高斯模型将不足以刻画数据分布,须要考虑使用4高斯混合分布。

当GMM中的高斯分布越多,对数据的刻画将越仔细(当然须要的训练数据就很多其它,计算量也会更大)。

GMM高斯混合模型 学习(2)的更多相关文章

  1. GMM高斯混合模型学习笔记(EM算法求解)

    提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一 ...

  2. K-Means(K均值)、GMM(高斯混合模型),通俗易懂,先收藏了!

    1. 聚类算法都是无监督学习吗? 什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组.给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组.理论上,同一组中的数据点应该具有相似 ...

  3. opencv::GMM(高斯混合模型)

    GMM方法概述:基于高斯混合模型期望最大化. 高斯混合模型 (GMM) 高斯分布与概率密度分布 - PDF 初始化 初始化EM模型: Ptr<EM> em_model = EM::crea ...

  4. EM算法和高斯混合模型GMM介绍

    EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...

  5. 高斯混合模型GMM与EM算法的Python实现

    GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...

  6. 高斯混合模型参数估计的EM算法

    # coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...

  7. 贝叶斯来理解高斯混合模型GMM

    最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...

  8. 高斯混合模型(GMM) - 混合高斯回归(GMR)

    http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲 ...

  9. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

随机推荐

  1. Opencv学习笔记1:安装opencv和VS2015并进行环境配置

    用了Opencv一段时间了,简单记录一下opencv在vs2015下的配置. 第一部分:OpenCV3.2.0的下载 OpenCV官方下载地址: https://opencv.org/releases ...

  2. Android Studio --> Gradle Build设置自动

    ps:http://www.cnblogs.com/kangyi/p/4448398.html 应用场景 通常情况下我们的apps发布后也就是release模式下log是不显示的,debug模式下是显 ...

  3. python爬虫我是斗图之王

    python爬虫我是斗图之王 本文会以斗图啦网站为例,爬取所有表情包. 阅读之前需要对线程池.连接池.正则表达式稍作了解. 分析网站 页面url分析 打开斗图啦网站,简单翻阅之后发现最新表情每页包含的 ...

  4. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  5. 原生javascript知识点

    JAVASCRIPT 1.变量 1.1概念 变量源于数学,是计算机语言中存储计算结果或表示值抽象概念 计算机有个地方叫内存,变量都会将值存入到内存中,变量就是指向这个值的名字 1.2命名规则 1. 由 ...

  6. mac os颜色拾取工具/软件/器推荐

    软件名:ColorSnappe 目前我用的时1.1.0版本 该工具可以利用alt+command+c快捷键拾取颜色,拾取后可以自动把颜色代码放入剪切板 .我最喜欢它可以生成ios开发的代码,比如选择了 ...

  7. POJ 2417 Discrete Logging (Baby-Step Giant-Step)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2819   Accepted: 1386 ...

  8. Android开发:ListView加上长按事件

    为ListView加上长按事件 lvMain.setOnItemLongClickListener(new OnItemLongClickListener() { @Override public b ...

  9. DTCC:MySQl核心代码开发经验揭示

    http://tech.it168.com/a2012/0413/1337/000001337236.shtml

  10. 在 Linux 系统中安装Load Generator ,并在windows 调用

    原文地址:http://www.blogjava.net/qileilove/archive/2012/03/14/371861.html 由于公司需要测试系统的最大用户承受能力,所以需要学习使用lo ...