最短路

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 27577    Accepted Submission(s): 11927

Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

Input

入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店
所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B&
lt;=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
 
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
 
Sample Input
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
Sample Output
3
2
 讲解:这是一个求最短路的简单算法,用到的是Dijkstra
 #include<iostream>
#include<string.h>
using namespace std;
#define inf 9999999
int dis[],map[][];
int vis[];
int n,m;
void dij()
{
for(int i=; i<=n; i++)
dis[i]=map[][i]; //初始化为 ,直接能到达的路径的权值;
memset(vis,,sizeof(vis)); //标记数组初始化为0;
vis[]=; //1号点,已经访问过了,标记为1;
int k=;
for(int i=; i<n; i++)
{
int mmax=inf;
for(int j=; j<=n; j++)
{
if(!vis[j] && dis[j]<mmax)//如果这个点没有被标记过,并且(1到j)的值小于当前的值,
//因为下面已经优化一遍了;
{
mmax=dis[j];
k=j;
}
}
vis[k]=;
for(int j=; j<=n; j++) //重新调整边的权值,优化到最小;
{
if(!vis[j] && dis[j]>dis[k]+map[k][j])//如果没有被标记,并且1到j的最短路(dis[j])
dis[j]=dis[k]+map[k][j]; //并且1到j的最短路(dis[j])小于(1到k,k再到j的和):
} //dis[j]重新赋值为最小路;
}
}
int main()
{
while(cin>>n>>m)
{
int a,b,v;
if(n==&&m==)break;
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
map[i][j]=map[j][i]=inf;//全部初始化为最大值;
for(int i=; i<m; i++)
{
cin>>a>>b>>v;
if(map[a][b]>v) //排除不需要的,大路径;
map[a][b]=map[b][a]=v;
}
dij();
cout<<dis[n]<<endl;
}
return ;
}

HUD 2544 最短路 迪杰斯特拉算法的更多相关文章

  1. HDU 2680 最短路 迪杰斯特拉算法 添加超级源点

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. 最短路——迪杰斯特拉算法 HDU_3790

    初识最短路,今天只弄了一个迪杰斯特拉算法,而且还没弄成熟,只会最基本的O(n^2),想弄个优先队列都发现尼玛被坑爆了,那个不应该用迪杰斯特拉算法写 表示还是不会优化版的迪杰斯特拉算法,(使用优先队列) ...

  3. HDU 2544最短路 (迪杰斯特拉算法)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2544 最短路 Time Limit: 5000/1000 MS (Java/Others)    Me ...

  4. 【算法杂谈】LJX的迪杰斯特拉算法报告

    迪杰斯特拉(di jie qi)算法 这里有一张图: 假设要求从1号节点到5号节点的最短路.那么根据迪杰斯特拉算法的思想,我们先看: 节点1,从节点1出发的一共有3条路,分别是1-6.1-3.1-2. ...

  5. HDU6166-Senior Pan-Dijkstra迪杰斯特拉算法(添加超源点,超汇点)+二进制划分集合-2017多校Team09

    学长好久之前讲的,本来好久好久之前就要写题解的,一直都没写,懒死_(:з」∠)_ Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memor ...

  6. 最短路径之迪杰斯特拉算法的Java实现

    Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备 ...

  7. C#迪杰斯特拉算法

    C#迪杰斯特拉算法 网上有许多版本的,自己还是写一个理解点 Dijkstra.cs public class Dijkstra { private List<Node> _nodes; p ...

  8. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

  9. C# 迪杰斯特拉算法 Dijkstra

    什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Gener ...

随机推荐

  1. Python学习(七)面向对象 ——类和实例

    Python 面向对象 —— 类和实例 类 虽然 Python 是解释性语言,但是它是面向对象的,能够进行对象编程.至于何为面向对象,在此就不详说了.面向对象程序设计本身就很值得深入学习,如要了解,请 ...

  2. 将Maven2项目转为MyEclipse项目

    现在项目中,大家开始用jetty.它不用像在MyEclipse中使用Tomcat那样要部署,也不用像在Tomcat中那样,要把应用都放到webapp文件夹下.jetty可以直接用你的项目的目录结构. ...

  3. Spark1.0.0 应用程序部署工具spark-submit

    原文链接:http://blog.csdn.net/book_mmicky/article/details/25714545 随着Spark的应用越来越广泛,对支持多资源管理器应用程序部署工具的需求也 ...

  4. iOS:面向对象的思想使用sqlite数据库

    SQLite支持的常见数据类型如下所示. –INTEGER 有符号的整数类型 –REAL 浮点类型 –TEXT 字符串类型,采用UTF-8和UTF-16字符编码 –BLOB 二进制大对象类型,能够存放 ...

  5. [Todo] C++并发编程学习

    就主要看这本书吧: <C++并发编程实战_Cpp_Concurrency_In_Action> /Users/baidu/Documents/Data/Interview/C++ < ...

  6. STM32+IAP方案 实现网络升级应用固件

    关注了这个概念有些日子了,这段时间总算有机会实战==网络升级应用固件,这里记录下遇到的问题,及解决方案. 原理与网上流传的串口作为传输手段 一致:不同之处,无非我这里使用了网络设备传输.==(lwip ...

  7. 【Networking】Libevent客户端例子

    [原]Libevent客户端例子 时间 -- :: luotuo44的专栏 原文 http://blog.csdn.net/luotuo44/article/details/34416429 主题 l ...

  8. 【Python】【Nodejs】下载单张图片到本地,Python和Nodejs的比较

    Python版本: # 下载单张图片到本地,看用时多少 import urllib.request import datetime starttime = datetime.datetime.now( ...

  9. HDU 1251 统计难题 (Trie)

    pid=1251">统计难题 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131070/65535 K (Java/ ...

  10. C#应用视频教程2.1 OPENGL虚拟仿真介绍

    OPENGL的虚拟仿真对于工控自动化的意义很大,虽然市面上有很多的第三方软件比如Solidworks,Mathlab,ProE等等软件可以做仿真,而且能够实现的功能包括了流体分析,力学分析,摩擦力分析 ...