【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块
【BZOJ3809】Gty的二逼妹子序列
Description
Input
Output
对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。
Sample Input
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4
Sample Output
0
0
2
1
1
1
0
1
2
HINT
题解:一看到题第一感觉仍然是莫队+树状数组,但是时间复杂度O(m*sqrt(n)*log(n)),承受不起啊,但是我们可以分块
对于原来的算法,修改时O(m*sqrt(n)*log(n))的,但是查询却是O(m*log(n))的,我们用分块相当于牺牲一点查询的时间,使修改更快一点
言归正传,我们只需要将权值分块,维护每个块内不同权值的种类数以及区间中每个权值的出现次数,然后查询时先查询[a,b]中间的块的种类数,在暴力统计两边的块内的出现次数,于是修改和查询都是O(m*sqrt(n))的了
别忘了特判a,b在一个块内的情况
从1开始的分块真的很别扭啊~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],s[100010],ans[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++;
while(r>q[i].qr) s[v[r]]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++;
while(l<q[i].ql) s[v[l]]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j];
}
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}
【BZOJ3236】[Ahoi2013]作业
别的和上题都一样,就是新增一个求[l,r]中数值∈[a,b]的数的个数,这个怎么搞都可以吧~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],sv[100010],s[100010],ans[1000010],sum[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++,sv[(v[r]-1)/siz]++;
while(r>q[i].qr) s[v[r]]--,sv[(v[r]-1)/siz]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++,sv[(v[l]-1)/siz]++;
while(l<q[i].ql) s[v[l]]--,sv[(v[l]-1)/siz]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j],sum[q[i].org]+=sv[j];
}
for(i=1;i<=m;i++) printf("%d %d\n",sum[i],ans[i]);
return 0;
}
【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块的更多相关文章
- 【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块
原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html bzoj3809 题目描述 Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了 ...
- 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1072 Solved: 292[Submit][Status][Di ...
- 【bzoj3809】Gty的二逼妹子序列
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- 【BZOJ3809】Gty的二逼妹子序列 莫队 分块
题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...
- 莫队p2 【bzoj3809】Gty的二逼妹子序列
发现一篇已经够长了...所以就放在这里吧... http://hzwer.com/5749.html ↑依然是看大牛题解过的 袜子那道题太简单了.... 然后被这道题超时卡了一段时间....... ...
- BZOJ3809:Gty的二逼妹子序列
浅谈莫队:https://www.cnblogs.com/AKMer/p/10374756.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...
- [bzoj3809]Gty的二逼妹子序列_莫队_分块
Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...
- [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业
[bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...
- BZOJ 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1387 Solved: 400[Submit][Status][Di ...
随机推荐
- Python zfill() 方法
描述 Python zfill() 方法返回指定长度的字符串,原字符串右对齐,前面填充0. 语法 zfill()方法语法: S.zfill(width) 参数 width -- 指定字符串的长度.原字 ...
- vsftpd被动模式配置
1.vsftp配置 参考文章http://linux008.blog.51cto.com/2837805/6105992.设置vsftpd.conf开启被动模式参数 #vim pasv ...
- Flume 中文入门手冊
原文:https://cwiki.apache.org/confluence/display/FLUME/Getting+Started 什么是 Flume NG? Flume NG 旨在比起 Flu ...
- EAV/ESS 8.x 自定义服务器正确方法+更新服务器列表
下面用64位的ESET Smart Security 8.0.319.1进行设置自定义更新服务器说明(注:修改方法32位和64位通用) 1. 让我们先看一下ESET Smart Security 8 ...
- dp之多重背包poj2392
题意:有k种石头,高为hi,在不超过ai的高度下,这种石头可以放置,有ci种这个石头,求这些石头所能放置的最高高度......... 思路:以往的什么硬币种数,最大硬币数之类的,他们的硬币都已经是排好 ...
- 用log4j将日志写入数据库
以下为log4j中的配置参数: %m 输出代码中指定的消息 %p 输出优先级,即DEBUG,INFO,WARN,ERROR,FATAL %r 输出自应用启动到输出该log信息耗费的毫秒数 %t 输出产 ...
- haproxy+keepalived实现高可用负载均衡(转)
软件负载均衡一般通过两种方式来实现:基于操作系统的软负载实现和基于第三方应用的软负载实现.LVS就是基于Linux操作系统实现的一种软负载,HAProxy就是开源的并且基于第三应用实现的软负载. ...
- PHP+jquery+ajax实现分页
HTML <div id="list"> <ul></ul> </div> <div id="pagecount&q ...
- 数学 - Codeforces Round #319 (Div. 1)A. Vasya and Petya's Game
Vasya and Petya's Game Problem's Link Mean: 给定一个n,系统随机选定了一个数x,(1<=x<=n). 你可以询问系统x是否能被y整除,系统会回答 ...
- EasyUI Ajax 表单
创建form <divstyle="width:230px;background:#E0ECFF;padding:10px;"> <formid=&quo ...