【BZOJ3809】Gty的二逼妹子序列

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
建议使用输入/输出优化。

题解:一看到题第一感觉仍然是莫队+树状数组,但是时间复杂度O(m*sqrt(n)*log(n)),承受不起啊,但是我们可以分块

对于原来的算法,修改时O(m*sqrt(n)*log(n))的,但是查询却是O(m*log(n))的,我们用分块相当于牺牲一点查询的时间,使修改更快一点

言归正传,我们只需要将权值分块,维护每个块内不同权值的种类数以及区间中每个权值的出现次数,然后查询时先查询[a,b]中间的块的种类数,在暴力统计两边的块内的出现次数,于是修改和查询都是O(m*sqrt(n))的了

别忘了特判a,b在一个块内的情况

从1开始的分块真的很别扭啊~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],s[100010],ans[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++;
while(r>q[i].qr) s[v[r]]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++;
while(l<q[i].ql) s[v[l]]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j];
}
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}

【BZOJ3236】[Ahoi2013]作业

别的和上题都一样,就是新增一个求[l,r]中数值∈[a,b]的数的个数,这个怎么搞都可以吧~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],sv[100010],s[100010],ans[1000010],sum[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++,sv[(v[r]-1)/siz]++;
while(r>q[i].qr) s[v[r]]--,sv[(v[r]-1)/siz]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++,sv[(v[l]-1)/siz]++;
while(l<q[i].ql) s[v[l]]--,sv[(v[l]-1)/siz]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j],sum[q[i].org]+=sv[j];
}
for(i=1;i<=m;i++) printf("%d %d\n",sum[i],ans[i]);
return 0;
}

【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块的更多相关文章

  1. 【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块

    原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html bzoj3809 题目描述 Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了 ...

  2. 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1072  Solved: 292[Submit][Status][Di ...

  3. 【bzoj3809】Gty的二逼妹子序列

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  4. 【BZOJ3809】Gty的二逼妹子序列 莫队 分块

    题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...

  5. 莫队p2 【bzoj3809】Gty的二逼妹子序列

    发现一篇已经够长了...所以就放在这里吧... http://hzwer.com/5749.html ↑依然是看大牛题解过的   袜子那道题太简单了.... 然后被这道题超时卡了一段时间....... ...

  6. BZOJ3809:Gty的二逼妹子序列

    浅谈莫队:https://www.cnblogs.com/AKMer/p/10374756.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...

  7. [bzoj3809]Gty的二逼妹子序列_莫队_分块

    Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...

  8. [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业

    [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj   bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...

  9. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

随机推荐

  1. 零基础学python-5.4 数字精度与复数

    1.整数精度 这里我们对照一下python2.7与python3.4的整数精度 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/ ...

  2. tp读取器和写入器

    一.读取器 控制器调用如下: //以ID的方式查询数据$user=User::get(3);//查询ID为3的单条数据echo $user->username;//以对象的方式显示对应的字段值 ...

  3. Sql server注入简单认识

    登录界面常常会涉及到敏感关键字的注入 为了对应面试,再看一下 怎样防止注入, 可以过滤SQL需要参数中的敏感字符(忽略大小写) public static string Split(string in ...

  4. 停掉一台服务器,Nginx响应慢(转载)

    测试发现的问题及解决办法 1.当后端两台IIS应用服务器都正常时,访问速度非常快,查看日志,原来一个请求,是后端两台服务器同时响应的; 2.为了模仿故障测试,停掉一台IIS应用服务器,这时再访问,请求 ...

  5. java同一个实体的复制

    import org.springframework.beans.BeanUtils; //将mon的值复制给monitorCommission;monitorCommission是实体Monitor ...

  6. Atitit.web预览播放视频的总结

    Atitit.web预览播放视频的总结 1. 浏览器类型的兼容性(chrome,ff,ie) 1 2. 操作系统的兼容性 1 3. 视频格式的内部视频格式跟播放器插件的兼容性.. 2 4. 指定播放器 ...

  7. 编译g++后更新libstdc++.so.6链接

    若不更新链接,运行时可能会发生错误: ./a.out: /usr/lib/libstdc++.so.6: version `GLIBCXX_3.4.14' not found (required by ...

  8. CWidgetMgr---H

    /************************************************************************/ //管理部件 //部件自动根据Z顺序调整消息的优先 ...

  9. firewalld增加端口访问权限

    firewall-cmd --zone=public --add-port=80/tcp --permanent firewall-cmd --reload

  10. Android——excise(用线性布局、表格布局、相对布局做发送邮件界面)

    LinearLayout <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns ...