【Python算法】递归与递归式
该树结构显示了从1(根节点)到n(n个叶节点)的整个倍增过程。节点下的标签表示从n减半到1的过程。
当我们处理递归的时候,这些级数代表了问题实例的数量以及对一系列递归调用来说处理的相关工作量。
当我们需要找出全部的工作量时,我们需要用到树的高度以及每一层所处理的工作量。每一层总共的标志总数保持在n。
Recursion and Recurrences
def S(seq,i=0):
if i==len(seq):return 0
return S(seq,i+1)+seq[i]
该求和式从参数i开始,当其值超出目标序列时,函数返回0;否则将i的位置加i,继续求剩下序列的和。
计算 S(seq,i) 所需要的时间T(n)等于递归调用 S(seq,i+1) 所需要的时间加上访问 seq[i] 所需的时间。(默认T(k) = Θ(1) , k为常数)
可以定义为 T(n) = T(n-1) + 1
目标是把递归展开的层数用一个变量i来描述的表达式。
将原式中的n值替换为n-1可得 : T(n-1) = T(n-2) + 1
假设T(n)递归展开式次数为i,可得:
T(n) = T(n-i) + i
然后将T(n-i) 变成 T(i)
所以,函数S是一个线性级的运行时间的操作。
这种方法称为重复带入法,或者迭代法。一般分为以下步骤:
逐步展开递归式,一直到我们发现其中的模式为止。
将该模式表示出来(通常会涉及一个求和式)并用变量i来表示其行号。
根据i层递归将会达到基本情况来选择i的值(并解决该求和式)。
A Few Important Examples
递归式的一般形式: T(n) = a · T(g(n)) + f(n),a指递归调用的数量,g(n)递归过程所要解决的子问题大小,f(n)代表了函数中的额外操作。
递归式5:
T(n) = T(n/2) + 1
= { T(n/4) + 1 } + 1
= { T(n/8) + 1 } + 1 + 1
令i=lgn ,得到 T(n) = Θ(lgn)
递归式6:
if k is a height, then n/2k is the number of nodes at that height . T(n) = Θ(n)
递归式8:
递归树根节点上操作时间为n,后面的两次递归调用中,各自执行的都是减半操作,各节点的操作时间等于标签值。
每一行的和为n,并且有lgn+1行节点,得出总和为nlgn+n,Θ(nlgn)。
The Master Theorem 主定理
递归式与分治法存在的一般关系式为: T(n) = aT(n/b) + f(n)
主要思想为:有a重调用,每重调用处理掉一定比例的数据(数据集的1/b),还存在一个额外的f(n)操作。
三种基本情况:
大部分操作都是运行在根节点上
大部分操作运行在叶节点上
均匀分布在该递归树的各行之间
①、大部分操作都是运行在根节点上,总运行时间为Θ(f(n))
意味着:f(n)增长趋势将严格快于叶节点数的增长。
T(n) = Θ(f(n)) = Θ(n),如果看到b大于a,就立即可以确定n属于表达式的主导部分
②、大部分操作运行在叶节点上
例如:T(n) = 2T(n/2)+ lgn ,叶子节点数为n,f(n)=lgn,运行时间就是计算叶节点数的时间 Θ(n)。
③、均匀分布在该递归树的各行之间
求该树各层操作之和的求和式
Merge Sort, 归并排序例子:
The input (seq) has a size of n. There are two recursive calls, each on a subproblem of n/2
In addition, there is some work performed in a while loop and in res.reverse(); this work is Θ(n).
This gives us the well-known recurrence number 8, T(n) = 2T(n/2) + Θ(n), which means that the running time of merge sort is Θ(n lg n),
Summer
The sum of the n first integers is quadratic, and the sum of the lg n first powers of two is linear.
The first of these identities can be illustrated as a round-robin tournament, with all possible pairings of n elements;
the second is related to a knockout tournament, with lg n rounds, where all but the winner must be knocked out.
A function is recursive if it calls itself (directly or via other functions).
A recurrence relation is an equation that relates a function to itself, in a recursive way (such as T(n) = T(n/2) + 1).
These equations are often used to describe the running times of recursive algorithms, and to be able to solve them, we need to assume something about the base case of the recursion;
【Python算法】递归与递归式的更多相关文章
- Python算法:推导、递归和规约
Python算法:推导.递归和规约 注:本节中我给定下面三个重要词汇的中文翻译分别是:Induction(推导).Recursion(递归)和Reduction(规约) 本节主要介绍算法设计的三个核心 ...
- Python之函数的递归、匿名函数、内置函数
一.函数的递归 ''' 1 什么是函数递归 函数递归调用(是一种特殊的嵌套调用):在调用一个函数的过程中,又直接或间接地调用了该函数本身 递归必须要有两个明确的阶段: 递推:一层一层递归调用下去,强调 ...
- 算法打基础——符号&递归解法
第二节 算法复杂度分析的的基本符号及 递归关系式下的复杂度解法 这次的主要知识点是: 1.各种复杂度符号 2.递归复杂度解法: 分为三种 替换法(猜!) 递归树法 主定理 1各种复杂度符号 ...
- python学习:函数的递归调用
计算阶层 普通方法: -使用循环 #!/usr/bin/python def factorial(n): sum = 1 for i in range(1,n+1): ...
- 算法基础_递归_求杨辉三角第m行第n个数字
问题描述: 算法基础_递归_求杨辉三角第m行第n个数字(m,n都从0开始) 解题源代码(这里打印出的是杨辉三角某一层的所有数字,没用大数,所以有上限,这里只写基本逻辑,要符合题意的话,把循环去掉就好) ...
- Python基础之初识递归
初识递归 递归的定义: 在一个函数里再调用这个函数本身,这种魔性的使用函数的方式就叫做递归. 递归的最大深度--997 递归函数不受外力的阻止会一直执行下去,python为了杜绝此类现象,强制将递归层 ...
- Python之文件处理-递归删除特定文件
Python之文件处理-递归删除特定文件 #!/usr/bin/env python # -*- coding:utf-8 -*- import os def delete_particular_fi ...
- Python中的函数递归思想,以及对比迭代和递归解决Fibonacci数列
什么是递归?简单的说就是:函数自身调用自身. “普通程序员用迭代,天才程序员用递归” 虽然递归 在运行时会不断出栈压栈,调用底层的寄存器,造成空间上的占用以及时间上的缓慢, 但在一些算法上面仍然是递归 ...
- Java实现 蓝桥杯VIP 算法训练 非递归(暴力)
试题 算法训练 非递归 问题描述 当x>1时,Hermite多项式的定义见第二版教材125页.用户输入x和n,试编写"非递归"函数,输出对应的Hermite多项式的值.其中x ...
- 对于python装饰器结合递归的进一步理解
对于python装饰器结合递归的进一步理解 代码如下: import functools def memoize(fn): print('start memoize') known = dict() ...
随机推荐
- JMeter学习笔记(三)
D. User Defined Variables:用户自定义的变量,在此我们可以定义后面原件需要引用的变量并对其进行赋值.jsessionid一般是服务器返回的,每个用户返回的都不一样,所以在此不应 ...
- redis储存中文,客服端读取出现乱码
[root@cache03 ~]# redis-cli -h 192.168.1.112 -p 6379 192.168.1.112:6379> set chen 陈林 OK 192.168.1 ...
- Ownerdrawn ComboBox
[ToolboxBitmap(typeof(ComboBox))] class ComboBoxEx : ComboBox { public ComboBoxEx() { this.DrawMode ...
- oozie调度中的重试和手工rerun一个workflow
在oozie中有Bundle.Coordinator和Workflow三种类型的job,他们之间可以有以下包含关系. Bundle > Coordinator > Workflow. 1. ...
- web automation 常用技术比较
selenium2支持通过各种driver(FirfoxDriver,IternetExplorerDriver,OperaDriver,ChromeDriver)驱动真实浏览器完成测试. 除此之外, ...
- 浅谈Facebook的服务器架构(组图)
导读:毫无疑问,作为全球最领先的社交网络,Facebook的高性能集群系统承担了海量数据的处理,它的服务器架构一直为业界众人所关注.CSDN博主yanghehong在他自己最新的一篇博客< Fa ...
- sdut 2158:Hello World!(第一届山东省省赛原题,水题,穷举)
Hello World! Time Limit: 1000MS Memory limit: 65536K 题目描述 We know that Ivan gives Saya three problem ...
- ajax 请求登录超时跳转登录页的示例代码
Ajax AJAX即“Asynchronous Javascript + XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. 在Filter里判断是否登录,如果未 ...
- zookeeper配置详解
原文地址: http://itindex.net/detail/40187-zookeeper-%E7%AE%A1%E7%90%86%E5%91%98-%E7%AE%A1%E7%90%86 参数名 说 ...
- Math函数
floor --将一个小数向下舍入为整数 float floor ( float $value ) 注意:floor返回的虽然是取整的数字 但是类型仍然是float类型. 实例: echo floor ...