转载-----Java Longest Palindromic Substring(最长回文字符串)
转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html
假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string。如aba,或者abba。本题是这种,给定输入一个字符串。要求输出一个子串,使得子串是最长的padromic string。
下边提供3种思路
1.两侧比较法
以abba这样一个字符串为例来看,abba中,一共同拥有偶数个字。第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位
以aba这样一个字符串为例来看,aba中。一共同拥有奇数个字符。排除掉正中间的那个字符后,第1位=倒数第1位......第N位=倒数第N位
所以,如果找到一个长度为len1的子串后,我们接下去測试它是否满足,第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位。也就是说,去測试从头尾到中点,字符是否逐一相应相等。
public class LongestPalindromicSubString1 { /**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(longestPalindrome1("babcbabcbaccba"));
} public static String longestPalindrome1(String s) { int maxPalinLength = 0;
String longestPalindrome = null;
int length = s.length(); // check all possible sub strings
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome(curr)) {
if (len > maxPalinLength) {
longestPalindrome = curr;
maxPalinLength = len;
}
}
}
} return longestPalindrome;
} public static boolean isPalindrome(String s) { for (int i = 0; i < s.length() - 1; i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
return false;
}
} return true;
}
}
</span>
2.动态规划法
如果dp[ i ][ j ]的值为true,表示字符串s中下标从 i 到 j 的字符组成的子串是回文串。那么能够推出:
dp[ i ][ j ] = dp[ i + 1][ j - 1] && s[ i ] == s[ j ]。
这是一般的情况,因为须要依靠i+1, j -1,所以有可能 i + 1 = j -1, i +1 = (j - 1) -1,因此须要求出基准情况才干套用以上的公式:
a. i + 1 = j -1,即回文长度为1时,dp[ i ][ i ] = true;
b. i +1 = (j - 1) -1,即回文长度为2时,dp[ i ][ i + 1] = (s[ i ] == s[ i + 1])。
有了以上分析就能够写出代码了。
须要注意的是动态规划须要额外的O(n2)的空间。
public class LongestPalindromicSubString2 { public static String longestPalindrome2(String s) {
if (s == null)
return null; if(s.length() <=1)
return s; int maxLen = 0;
String longestStr = null; int length = s.length(); int[][] table = new int[length][length]; //every single letter is palindrome
for (int i = 0; i < length; i++) {
table[i][i] = 1;
}
printTable(table); //e.g. bcba
//two consecutive same letters are palindrome
for (int i = 0; i <= length - 2; i++) {
//System.out.println("i="+i+" "+s.charAt(i));
//System.out.println("i="+i+" "+s.charAt(i+1));
if (s.charAt(i) == s.charAt(i + 1)){
table[i][i + 1] = 1;
longestStr = s.substring(i, i + 2);
}
}
System.out.println(longestStr);
printTable(table);
//condition for calculate whole table
for (int l = 3; l <= length; l++) {
for (int i = 0; i <= length-l; i++) {
int j = i + l - 1;
if (s.charAt(i) == s.charAt(j)) {
table[i][j] = table[i + 1][j - 1];
if (table[i][j] == 1 && l > maxLen)
longestStr = s.substring(i, j + 1); } else {
table[i][j] = 0;
}
printTable(table);
}
} return longestStr;
}
public static void printTable(int[][] x){
for(int [] y : x){
for(int z: y){
//System.out.print(z + " ");
}
//System.out.println();
}
//System.out.println("------");
}
public static void main(String[] args) {
System.out.println(longestPalindrome2("1263625"));//babcbabcbaccba
}
}</span>
3.中心扩展法
由于回文字符串是以中心轴对称的,所以假设我们从下标 i 出发。用2个指针向 i 的两边扩展推断是否相等,那么仅仅须要对0到
n-1的下标都做此操作,就能够求出最长的回文子串。但须要注意的是,回文字符串有奇偶对称之分,即"abcba"与"abba"2种类型。
因此须要在代码编写时都做推断。
设函数int Palindromic ( string &s, int i ,int j) 是求由下标 i 和 j 向两边扩展的回文串的长度,那么对0至n-1的下标。调用2次此函数:
int lenOdd = Palindromic( str, i, i ) 和 int lenEven = Palindromic (str , i , j ),就可以求得以i 下标为奇回文和偶回文的子串长度。
接下来以lenOdd和lenEven中的最大值与当前最大值max比較就可以。
这种方法有一个优点是时间复杂度为O(n2),且不须要使用额外的空间。
public class LongestPalindromicSubString3 {
public static String longestPalindrome(String s) {
if (s.isEmpty()) {
return null;
}
if (s.length() == 1) {
return s;
}
String longest = s.substring(0, 1);
for (int i = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, i);
if (tmp.length() > longest.length()) {
longest = tmp;
} // get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length() > longest.length()) {
longest = tmp;
}
}
return longest;
} // Given a center, either one letter or two letter,
// Find longest palindrome
public static String helper(String s, int begin, int end) {
while (begin >= 0 && end <= s.length() - 1
&& s.charAt(begin) == s.charAt(end)) {
begin--;
end++;
}
String subS = s.substring(begin + 1, end);
return subS;
} public static void main(String[] args) {
System.out.println(longestPalindrome("ABCCBA"));//babcbabcbaccba
}
}</span>
转载-----Java Longest Palindromic Substring(最长回文字符串)的更多相关文章
- Java Longest Palindromic Substring(最长回文字符串)
假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...
- Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- 1. Longest Palindromic Substring ( 最长回文子串 )
要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...
- LeetCode:Longest Palindromic Substring 最长回文子串
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- lintcode :Longest Palindromic Substring 最长回文子串
题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...
- 【翻译】Longest Palindromic Substring 最长回文子串
原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
- [LeetCode] Longest Palindromic Substring 最长回文串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
随机推荐
- java.lang.IllegalStateException: getOutputStream() has already been called for this response解决方案
异常产生原因:web容器生成的servlet代码中有out.write(""),这个和JSP中调用的response.getOutputStream()产生冲突.即Servlet规 ...
- SPI子系统分析之一:框架
内核版本:3.9.5 SPI子系统概述: 一个SPI主控制器对应一条SPI总线,当然在系统中有唯一的总线编号. SPI总线上有两类设备: 其一是主控端,通常作为SOC系统的一个子模块出现,很多嵌入式M ...
- Spark中RDD的常用操作(Python)
弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的.RDD是一个容错的.可以被并行操作的元素集合.创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合:从外部存储系统中引用 ...
- 微信小程序相关二、css介绍,菜单制作,表单相关,京东注册页面
一.第二天上午 1.1上午因为有其他的课所以没有去这个课,不过下午看复习的时候的概括,讲了DTD,语法特性,css选择器以及权重,还有一些简单的样式 1.2 DTD Docuement Type 声明 ...
- css水平居中,竖直居中技巧(二)
css水平居中,竖直居中技巧(二)===### 1.效果 ### 2.代码#### 2.1.index.html <!DOCTYPE html> <html lang="z ...
- 144. Binary Tree Preorder Traversal (Tree, Stack)
Given a binary tree, return the preorder traversal of its nodes' values. For example: Given binary t ...
- HQL多表查询
------------------siwuxie095 HQL 多表查询 以客户和联系人为例(一对多) 1.内连接 (1)hql 语句写法 from Customer c inner join c. ...
- 解决git无法clone地址为https的库
一.问题描述 早上在学习<Spark快速大数据分析>的时候,需要下载书本的实例代码,于是用git clone一下给出的库: https://github.com/databricks/le ...
- hive1.2.1问题集锦
1.启动hive报错: Logging initialized using configuration in jar:file:/usr/local/hive-1.2.1/lib/hive-commo ...
- [BAT] 以当前时间为名创建文件夹,将本地文件夹里的文件拷贝到远程共享目录,而且保证本地和Jenkins上运行都成功
@echo off rem connect to szotpc801 net use * /del /yes NET USE X: \\10.66.234.95\d$ Autotest123 /use ...