转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html

假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string。如aba,或者abba。本题是这种,给定输入一个字符串。要求输出一个子串,使得子串是最长的padromic string。

下边提供3种思路

1.两侧比较法

以abba这样一个字符串为例来看,abba中,一共同拥有偶数个字。第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位
以aba这样一个字符串为例来看,aba中。一共同拥有奇数个字符。排除掉正中间的那个字符后,第1位=倒数第1位......第N位=倒数第N位
所以,如果找到一个长度为len1的子串后,我们接下去測试它是否满足,第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位。也就是说,去測试从头尾到中点,字符是否逐一相应相等。

public class LongestPalindromicSubString1 {

	/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(longestPalindrome1("babcbabcbaccba"));
} public static String longestPalindrome1(String s) { int maxPalinLength = 0;
String longestPalindrome = null;
int length = s.length(); // check all possible sub strings
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome(curr)) {
if (len > maxPalinLength) {
longestPalindrome = curr;
maxPalinLength = len;
}
}
}
} return longestPalindrome;
} public static boolean isPalindrome(String s) { for (int i = 0; i < s.length() - 1; i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
return false;
}
} return true;
}
}
</span>

2.动态规划法

如果dp[ i ][ j ]的值为true,表示字符串s中下标从 i 到 j 的字符组成的子串是回文串。那么能够推出:
    dp[ i ][ j ] = dp[ i + 1][ j - 1] && s[ i ] == s[ j ]。
    这是一般的情况,因为须要依靠i+1, j -1,所以有可能 i + 1 = j -1, i +1 = (j - 1) -1,因此须要求出基准情况才干套用以上的公式:
    a. i + 1 = j -1,即回文长度为1时,dp[ i ][ i ] = true;
    b. i +1 = (j - 1) -1,即回文长度为2时,dp[ i ][ i + 1] = (s[ i ] == s[ i + 1])。
    有了以上分析就能够写出代码了。

须要注意的是动态规划须要额外的O(n2)的空间。

public class LongestPalindromicSubString2 {

	public static String longestPalindrome2(String s) {
if (s == null)
return null; if(s.length() <=1)
return s; int maxLen = 0;
String longestStr = null; int length = s.length(); int[][] table = new int[length][length]; //every single letter is palindrome
for (int i = 0; i < length; i++) {
table[i][i] = 1;
}
printTable(table); //e.g. bcba
//two consecutive same letters are palindrome
for (int i = 0; i <= length - 2; i++) {
//System.out.println("i="+i+" "+s.charAt(i));
//System.out.println("i="+i+" "+s.charAt(i+1));
if (s.charAt(i) == s.charAt(i + 1)){
table[i][i + 1] = 1;
longestStr = s.substring(i, i + 2);
}
}
System.out.println(longestStr);
printTable(table);
//condition for calculate whole table
for (int l = 3; l <= length; l++) {
for (int i = 0; i <= length-l; i++) {
int j = i + l - 1;
if (s.charAt(i) == s.charAt(j)) {
table[i][j] = table[i + 1][j - 1];
if (table[i][j] == 1 && l > maxLen)
longestStr = s.substring(i, j + 1); } else {
table[i][j] = 0;
}
printTable(table);
}
} return longestStr;
}
public static void printTable(int[][] x){
for(int [] y : x){
for(int z: y){
//System.out.print(z + " ");
}
//System.out.println();
}
//System.out.println("------");
}
public static void main(String[] args) {
System.out.println(longestPalindrome2("1263625"));//babcbabcbaccba
}
}</span>

3.中心扩展法

由于回文字符串是以中心轴对称的,所以假设我们从下标 i 出发。用2个指针向 i 的两边扩展推断是否相等,那么仅仅须要对0到
n-1的下标都做此操作,就能够求出最长的回文子串。但须要注意的是,回文字符串有奇偶对称之分,即"abcba"与"abba"2种类型。
因此须要在代码编写时都做推断。
     设函数int Palindromic ( string &s, int i ,int j) 是求由下标 i 和 j 向两边扩展的回文串的长度,那么对0至n-1的下标。调用2次此函数:
     int lenOdd =  Palindromic( str, i, i ) 和 int lenEven = Palindromic (str , i , j ),就可以求得以i 下标为奇回文和偶回文的子串长度。

接下来以lenOdd和lenEven中的最大值与当前最大值max比較就可以。
     这种方法有一个优点是时间复杂度为O(n2),且不须要使用额外的空间。

public class LongestPalindromicSubString3 {
public static String longestPalindrome(String s) {
if (s.isEmpty()) {
return null;
}
if (s.length() == 1) {
return s;
}
String longest = s.substring(0, 1);
for (int i = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, i);
if (tmp.length() > longest.length()) {
longest = tmp;
} // get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length() > longest.length()) {
longest = tmp;
}
}
return longest;
} // Given a center, either one letter or two letter,
// Find longest palindrome
public static String helper(String s, int begin, int end) {
while (begin >= 0 && end <= s.length() - 1
&& s.charAt(begin) == s.charAt(end)) {
begin--;
end++;
}
String subS = s.substring(begin + 1, end);
return subS;
} public static void main(String[] args) {
System.out.println(longestPalindrome("ABCCBA"));//babcbabcbaccba
}
}</span>

转载-----Java Longest Palindromic Substring(最长回文字符串)的更多相关文章

  1. Java Longest Palindromic Substring(最长回文字符串)

    假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...

  2. Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  3. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  4. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  5. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  6. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  7. 【翻译】Longest Palindromic Substring 最长回文子串

    原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...

  8. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  9. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

随机推荐

  1. java.lang.IllegalStateException: getOutputStream() has already been called for this response解决方案

    异常产生原因:web容器生成的servlet代码中有out.write(""),这个和JSP中调用的response.getOutputStream()产生冲突.即Servlet规 ...

  2. SPI子系统分析之一:框架

    内核版本:3.9.5 SPI子系统概述: 一个SPI主控制器对应一条SPI总线,当然在系统中有唯一的总线编号. SPI总线上有两类设备: 其一是主控端,通常作为SOC系统的一个子模块出现,很多嵌入式M ...

  3. Spark中RDD的常用操作(Python)

    弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的.RDD是一个容错的.可以被并行操作的元素集合.创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合:从外部存储系统中引用 ...

  4. 微信小程序相关二、css介绍,菜单制作,表单相关,京东注册页面

    一.第二天上午 1.1上午因为有其他的课所以没有去这个课,不过下午看复习的时候的概括,讲了DTD,语法特性,css选择器以及权重,还有一些简单的样式 1.2 DTD Docuement Type 声明 ...

  5. css水平居中,竖直居中技巧(二)

    css水平居中,竖直居中技巧(二)===### 1.效果 ### 2.代码#### 2.1.index.html <!DOCTYPE html> <html lang="z ...

  6. 144. Binary Tree Preorder Traversal (Tree, Stack)

    Given a binary tree, return the preorder traversal of its nodes' values. For example: Given binary t ...

  7. HQL多表查询

    ------------------siwuxie095 HQL 多表查询 以客户和联系人为例(一对多) 1.内连接 (1)hql 语句写法 from Customer c inner join c. ...

  8. 解决git无法clone地址为https的库

    一.问题描述 早上在学习<Spark快速大数据分析>的时候,需要下载书本的实例代码,于是用git clone一下给出的库: https://github.com/databricks/le ...

  9. hive1.2.1问题集锦

    1.启动hive报错: Logging initialized using configuration in jar:file:/usr/local/hive-1.2.1/lib/hive-commo ...

  10. [BAT] 以当前时间为名创建文件夹,将本地文件夹里的文件拷贝到远程共享目录,而且保证本地和Jenkins上运行都成功

    @echo off rem connect to szotpc801 net use * /del /yes NET USE X: \\10.66.234.95\d$ Autotest123 /use ...