传送门

大佬们似乎都是用树剖+并查集优雅地A了此题

然后我太弱了,只能打打LCT的板子

虽然的确可以挺无脑的A掉……

不过至少这题教了我该怎么维护LCT上虚子树的信息,具体看这里

首先,答案很明显是断开边后两个子树的大小之积

所以只要把这条边split出来,答案就是$(size[y]-size[x])*size[x]$(很好理解)

或者$x的虚子树大小*y的虚子树大小$(我用的是这种方法,为什么的话,代码里有注解)

 //minamoto
#include<cstdio>
#include<algorithm>
#include<iostream>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char obuf[<<],*o=obuf;
inline void print(ll x){
if(x>) print(x/);
*o++=x%+;
}
const int N=;
int fa[N],ch[N][],s[N],rev[N],top,sum[N],summ[N];
inline bool isroot(int x){return ch[fa[x]][]!=x&&ch[fa[x]][]!=x;}
inline void pushup(int x){sum[x]=sum[ch[x][]]+sum[ch[x][]]+summ[x]+;}
inline void pushdown(int x){
if(x&&rev[x]){
swap(ch[x][],ch[x][]);
rev[ch[x][]]^=,rev[ch[x][]]^=;
rev[x]=;
}
}
void rotate(int x){
int y=fa[x],z=fa[y],d=ch[y][]==x;
if(!isroot(y)) ch[z][ch[z][]==y]=x;
fa[x]=z,fa[y]=x,fa[ch[x][d^]]=y,ch[y][d]=ch[x][d^],ch[x][d^]=y,pushup(y);
}
void splay(int x){
s[top=]=x;for(int i=x;!isroot(i);i=fa[i]) s[++top]=fa[i];
while(top) pushdown(s[top--]);
for(int y=fa[x],z=fa[y];!isroot(x);y=fa[x],z=fa[y]){
if(!isroot(y))
((ch[y][]==x)^(ch[z][]==y))?rotate(x):rotate(y);
rotate(x);
}
pushup(x);
}
inline void access(int x){
for(int y=;x;x=fa[y=x])
splay(x),summ[x]+=sum[ch[x][]],summ[x]-=sum[ch[x][]=y];
}
inline void makeroot(int x){
access(x),splay(x),rev[x]^=;
}
inline void split(int x,int y){
makeroot(x),access(y),splay(y);
}
inline void link(int x,int y){
split(x,y),summ[fa[x]=y]+=sum[x],pushup(y);
}
int main(){
//freopen("testdata.in","r",stdin);
int n=read(),m=read();
for(int i=;i<=n;++i) sum[i]=;
while(m--){
char ch;int u,v;
ch=getc(),u=read(),v=read();
if(ch=='A') link(u,v);
else split(u,v),print(1ll*(summ[u]+)*(summ[v]+)),*o++='\n';
/*split之后splay中肯定只有u,v两点
然后虚子树中的点数就相当于cut之后两点各自的子树大小
然后又因为u和v都已经被splay过了,肯定没有点在它上面*/
}
fwrite(obuf,o-obuf,,stdout);
return ;
}

[BZOJ4530][Bjoi2014]大融合(LCT)的更多相关文章

  1. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  2. BZOJ4530[Bjoi2014]大融合——LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...

  3. BZOJ4530:[BJOI2014]大融合(LCT)

    Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...

  4. [bzoj4530][Bjoi2014]大融合_LCT

    大融合 bzoj-4530 Bjoi-2014 题目大意:n个点,m个操作,支持:两点连边:查询两点负载:负载.边(x,y)的负载就是将(x,y)这条边断掉后能和x联通的点的数量乘以能和y联通的点的数 ...

  5. 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...

  6. bzoj4530 [Bjoi2014]大融合 子树信息 LCT

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4530/ 题解 想要求出一条边的负载那么就是要求出一个点为根的时候的另一个点的子树大小. 又因为 ...

  7. BZOJ4530 BJOI2014大融合(线段树合并+并查集+dfs序)

    易知所求的是两棵子树大小的乘积.先建出最后所得到的树,求出dfs序和子树大小.之后考虑如何在动态加边过程中维护子树大小.这个可以用树剖比较简单的实现,但还有一种更快更优美的做法就是线段树合并.对每个点 ...

  8. Luogu4219 BJOI2014 大融合 LCT

    传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻 ...

  9. BZOJ.4530.[BJOI2014]大融合(LCT)

    题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...

随机推荐

  1. 结对作业——四则运算 Part3. 对于结对编程的总结与思考

    结对作业——四则运算 Part3. 对于结对编程的总结与思考 PB15061303 刘梓轩PB16061489 艾寅中 GITHUB 地址 戳这里 目录 Part 1. Core代码编写部分 Part ...

  2. Scala基础:定义变量和逻辑判断语句以及方法和函数

    定义变量和逻辑判断语句 package com.zy.scala import scala.collection.immutable object ScalaDemo { def main(args: ...

  3. C#使用NPOI导出excel设置单元格背景颜色

    ICellStyle cellStyle = workbook.CreateCellStyle(); cellStyle.FillPattern = FillPattern.SolidForegrou ...

  4. 关于使用PL/SQL连接本地oracle时报错:ORA-12514: TNS: 监听程序当前无法识别连接描述符中请求的服务解决

    转自:https://blog.csdn.net/a657281084/article/details/49490069 问题:Oracle主服务和监听器服务已经启动,使用SQL Plus能够正常连接 ...

  5. Openssl oscp命令

    一.简介 ocsp,在线证书状态命,能够执行很多OCSP的任务,可以被用于打印请求文件和响应文件, 二.语法 openssl ocsp [-out file] [-issuer file] [-cer ...

  6. Loadrunner11无法在win7 64位上启用ie解决办法

    Loadrunner11无法在win7 64位上启用ie解决办法 1.loadrunner11在win7 64位上默认启用的是32位的那个IE浏览器,路径:C:\Program Files (x86) ...

  7. 【转】Comprehensive learning path – Data Science in Python

    Journey from a Python noob to a Kaggler on Python So, you want to become a data scientist or may be ...

  8. c#反射优化 表达式树

    using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; us ...

  9. 往数据库添加的时候(只添加以前未添加的记录的写法)c#

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  10. 独立看门狗实验-IWDG

    为什么要看门狗? 注意:喂狗是0XAAAA写到KR. 头文件iwdg.h iwdg.c