【lojg152】 乘法逆元 2(数学)
题面
题解
orz Wa自动机
这是一个可以\(O(n)\)求出\(n\)个数逆元的方案
先把所有的数做一个前缀积,记为\(s_i\)
然后我们用快速幂求出\(s_n\)的逆元,记为\(sv_n\)
因为\(sv_n\)是\(a_1\)到\(a_n\)的逆元,我们把它乘上\(a_n\),就得到了\(sv_{n-1}\)
同理可得\(sv_{1,...,n-2}\)
那么\(a_i\)的逆元就可以用\(sv_i\times s_{i-1}\)来表示了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=5e6+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int a[N],s[N],sv[N],n,res;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),s[0]=1;
fp(i,1,n)a[i]=read(),s[i]=mul(s[i-1],a[i]);
sv[n]=ksm(s[n],P-2);
fd(i,n,2)sv[i-1]=mul(sv[i],a[i]);
fp(i,1,n)res=(1ll*res*998244353+1ll*sv[i]*s[i-1])%P;
printf("%d\n",res);
return 0;
}
【lojg152】 乘法逆元 2(数学)的更多相关文章
- 数学:乘法逆元-拓展GCD
乘法逆元应用在组合数学取模问题中,这里给出的实现不见得好用 给出拓展GCD算法: 扩展欧几里得算法是指对于两个数a,b 一定能找到x,y(均为整数,但不满足一定是正数) 满足x*a+y*b=gcd(a ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...
- CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- 同余and乘法逆元学习笔记
目录 数学符号 快速幂 方法一 方法二 同余 概念 同余的性质 乘法逆元 概念: 求逆元的方法 扩展欧几里得 快速幂法\(o(n*log(n))\) 递推法\(o(n)\) sjp大佬让我写同余那就只 ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 51nod1256(乘法逆元)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...
随机推荐
- Centos7安装jekyll
1.首先需要安装相应的依赖包及所需要的工具 sudo yum install nodejs npm ruby ruby-devel rubygems git 2.修改gem源 国内 使用的淘宝的更新源 ...
- solr的简单部署:在tomcat中启动slor
1,首先要下载solr 途径1: 官网网址: http://lucene.apache.org/ 与Lucene的官网是一个 途径2: 下载历史版本的网址: http://archive.apache ...
- 【FZU2178】礼物分配
题意 在双胞胎兄弟Eric与R.W的生日会上,他们共收到了N个礼物,生日过后他们决定分配这N个礼物(numv+numw=N).对于每个礼物他们俩有着各自心中的价值vi和wi,他们要求各自分到的礼物数目 ...
- ROS Learning-032 (提高篇-010 Launch)Launch 深入研究 --- (启动文件编程)ROS 的 XML语法简介
ROS 提高篇 之 Launch 深入研究 - 01 - 启动文件的编程 - ROS 的 XML语法简介 我使用的虚拟机软件:VMware Workstation 11 使用的Ubuntu系统:Ubu ...
- archives of source
"ubuntu 暂时不能解析域名 archive.ubuntu.com"怎么办? root下输入命令:lsb_release -a用来查询Ubuntu版本号 登录网站 http:/ ...
- [模板]KMP字符串匹配
洛谷P3375 注意:两次过程大致相同,故要熟读熟记,切勿搞混 可以看看其他的教程:http://www.cnblogs.com/c-cloud/p/3224788.html 本来就不太熟,若是在记不 ...
- [转]Python-__builtin__与__builtins__的区别与关系(超详细,经典)
在学习Python时,很多人会问到__builtin__.__builtins__和builtins之间有什么关系.百度或Google一下,有很 多答案,但是这些答案要么不准确,要么只说了一点点,并不 ...
- Web测试实践-任务进度-Day02
小组成员 华同学.郭同学.覃同学.刘同学.穆同学.沈同学 任务进度 在经过任务分配阶段后,大家都投入到了各自的任务中,以下是大家今天任务的进度情况汇总. 华同学 & 刘同学(任务1) 1.对爱 ...
- Python2.7.9 编码问题
最近学一学网络爬虫,遇到第一件头疼的事情就是编码问题, 看了很多教程讲得不清楚, 现在整理一下,希望以后查看方便一些 使用 sys.getdefaultencoding() 查看Python的 ...
- Ubuntu14.04 下安装Vmware-Tools
1.切换到ubuntu 图形界面 startx , 点击虚拟机菜单栏-安装VMware Tools 2. 在Ubuntu系统中找到VMwareTools-9.2.2-893683.tar.gz ,右键 ...